top of page

Nitrogen Fixing Bacteria


Nitrogen-fixing bacteria are naturally occurring microorganisms essential to the nitrogen cycle. They possess the unique capability to convert atmospheric nitrogen (N₂)—which is inert and unavailable directly to plants—into bioavailable nitrogen compounds such as ammonia (NH₃) or ammonium ions (NH₄⁺). This crucial biological process, termed biological nitrogen fixation, significantly enhances soil fertility, reduces dependency on synthetic fertilizers, and supports sustainable agriculture and environmental conservation.
At IndoGulf BioAg, we specialize in cultivating high-quality, non-GMO, robust strains of nitrogen-fixing bacteria tailored for diverse agricultural applications. Leveraging advanced biotechnological methods and rigorous quality control, our products consistently deliver superior performance, reliability, and sustainability.

What it is

Nitrogen-fixing bacteria are broadly categorized based on their interactions with plants:

1. Symbiotic Nitrogen-Fixing Bacteria

These microorganisms form beneficial, mutualistic associations with certain plants, particularly legumes.

  • Rhizobium species: The most prominent symbiotic nitrogen fixers, Rhizobium bacteria colonize legume roots (beans, peas, lentils, clover), forming specialized structures called root nodules. Within these nodules, nitrogenase enzymes actively convert atmospheric nitrogen into ammonia, providing the host plant with essential nitrogen nutrients. In exchange, plants supply the bacteria with carbon-based energy sources derived from photosynthesis. This mutualistic interaction is foundational in organic farming systems, significantly reducing the need for synthetic nitrogen fertilizers.


    Rhizobia: Soybean roots contain (a) nitrogen-fixing nodules. Cells within the nodules are infected with Bradyrhyzobium japonicum, a rhizobia or “root-loving” bacterium. The bacteria are encased in (b) vesicles inside the cell, as can be seen in this transmission electron micrograph.


    Rhizobia: Soybean roots contain (a) nitrogen-fixing nodules. Cells within the nodules are infected with Bradyrhyzobium japonicum, a rhizobia or “root-loving” bacterium. The bacteria are encased in (b) vesicles inside the cell, as can be seen in this transmission electron micrograph. (source)
    Rhizobia: Soybean roots contain (a) nitrogen-fixing nodules. Cells within the nodules are infected with Bradyrhyzobium japonicum, a rhizobia or “root-loving” bacterium. The bacteria are encased in (b) vesicles inside the cell, as can be seen in this transmission electron micrograph. (source)


2. Free-Living Nitrogen-Fixing Bacteria

Free-living nitrogen fixers operate independently within the soil ecosystem, requiring no direct plant host to carry out nitrogen fixation.

  • Azotobacter species: These aerobic bacteria are prevalent in nitrogen-rich, organic soils, actively enhancing nitrogen availability by converting atmospheric nitrogen into ammonia directly within the soil.

  • Cyanobacteria (blue-green algae): Widely distributed in various environments, cyanobacteria contribute significantly to nitrogen fixation, especially in aquatic ecosystems and rice paddies. They also improve soil organic matter and fertility, supporting sustainable crop growth.






Nitrogen Fixing Bacteria

Our Products

Explore our proprietary nitrogen-fixing bacteria strains, tailored to enrich your soil, enhance nitrogen availability, and promote robust, healthy crop development

Resources

bottom of page