top of page

366 results found with an empty search

  • Bradyrhizobium Japonicum - Manufacturer & Exporter | Indogulf BioAg

    Bradyrhizobium Japonicum also known as Rhizobium japonicum. It is a biological fertilizer that contains beneficial bacteria. Manufacturer & Supplier company in USA. Indogulf BioAg < Microbial Species Bradyrhizobium japonicum Badyrhizobium japonicum is a nitrogen-fixing bacterium that plays a crucial role in soybean cultivation. By forming symbiotic nodules on soybean roots, it converts atmospheric nitrogen (N₂) into ammonia (NH₃), a form that plants can readily use for growth. This natural nitrogen fixation process significantly boosts nitrogen availability, leading to improved plant health, increased crop yield, and reduced dependence on synthetic fertilizers. Rhizobium japonicum is vital for promoting sustainable agricultural practices while enhancing soil fertility in legume-based farming systems. Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Buy Now Benefits Nitrogen Fixation Rhizobium japonicum forms a symbiotic relationship with leguminous plants, particularly soybeans, to fix atmospheric nitrogen into ammonium (NH₄⁺). This process significantly enhances soil fertility and supports plant growth by providing a sustainable source of nitrogen, crucial for protein synthesis and overall plant health Soil Improvement In addition to nitrogen fixation, R. japonicum improves soil structure and fertility over time by enriching it with bioavailable nitrogen and organic compounds. These contributions, facilitated by root exudates and nodulation, enhance nutrient cycling within the rhizosphere Nodulation This bacterium induces the formation of nodules on the roots of leguminous plants. Within these nodules, nitrogenase enzymes convert atmospheric nitrogen into usable forms, ensuring an optimal environment for nitrogen fixation Increased Crop Yield By supplying fixed nitrogen directly to the host plant, R. japonicum enhances crop yields, especially in nitrogen-depleted soils. The symbiotic relationship helps crops thrive in nutrient-poor environments, significantly reducing the need for synthetic fertilizers Dosage & Application Additional Info Dosage & Application Additional Info Related Products Beauveria bassiana Hirsutella thompsonii Isaria fumosorosea Lecanicillium lecanii Metarhizium anisopliae Nomuraea rileyi Paracoccus denitrificans Bifidobacterium animalis Bifidobacterium bifidum Bifidobacterium breve Bifidobacterium infantis Bifidobacterium longum More Products Resources Read all

  • Iron Solubilizing Bacteria - Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Iron Solubilising, Acidithiobacillus Ferrooxidans & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Iron Solubilizing Bacteria Iron Solubilizing Bacteria convert insoluble forms of iron into highly soluble forms that plants can easily absorb, thereby preventing iron deficiency and significantly promoting healthy plant development. Product Enquiry What Why How FAQ What it is Iron solubilizing bacteria (ISB) are specialized microorganisms that enhance the availability of iron (Fe) in the soil. Iron is an essential micronutrient for plants, involved in various physiological processes such as photosynthesis, respiration, and nitrogen fixation. However, iron in many soils exists in insoluble forms that are not readily accessible to plants. ISB convert these insoluble forms into soluble iron that plants can absorb and utilize. Why is it important Iron deficiency can severely impact plant growth and productivity, particularly in calcareous or alkaline soils where iron availability is limited. The importance of iron solubilizing bacteria includes: Enhanced Nutrient Availability : ISB increase the availability of iron, promoting healthier and more vigorous plant growth. Improved Plant Health : Adequate iron levels support chlorophyll synthesis, enzyme activation, and overall plant metabolism. Sustainable Agriculture : Utilizing ISB can reduce the need for chemical iron fertilizers, promoting environmentally friendly farming practices. How it works Iron solubilizing bacteria employ several mechanisms to convert insoluble iron into soluble forms: Production of Organic Acids : ISB produce organic acids such as citric acid, gluconic acid, and siderophores. These acids lower the pH in the immediate vicinity of the bacteria, facilitating the dissolution of insoluble iron compounds (e.g., iron oxides) and releasing soluble iron ions (Fe^2+ and Fe^3+) into the soil solution. Reduction Processes : Some ISB can mediate reduction processes that convert insoluble ferric iron (Fe^3+) into more soluble ferrous iron (Fe^2+), which is more easily absorbed by plants. Chelation : ISB can produce siderophores, which are organic molecules that chelate iron ions, making them more soluble and available for plant uptake. By enhancing iron availability in the soil, iron solubilizing bacteria contribute to improved plant nutrition, health, and productivity, supporting sustainable agricultural practices. FAQ Content coming soon! Iron Solubilizing Bacteria Our Products Explore our range of premium Iron Solubilizing Bacteria strains tailored to meet your agricultural needs, ensuring efficient iron uptake for healthy plant development. Acidithiobacillus ferrooxidans Acidithiobacillus Ferrooxidans acts as a biofertilizer, enhancing nutrient availability by solubilizing soil iron, crucial for plants in iron-deficient soils. View Species 1 1 ... 1 ... 1 Resources Read all

  • Bionematicides - Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Nematicides, Serratia Marcescens, Pochonia Chlamydosporia, verticillum & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Bionematicides Bionematicides are innovative biological agents designed to control plant-parasitic nematodes (PPNs) in agricultural soils. These products work by targeting nematodes ( i.e root knot nematodes) directly or improving the resilience of crops against nematode attacks. By protecting plant roots, bionematicides help enhance crop health, boost yields, and promote sustainable farming practices. Unlike traditional chemical nematicides, bionematicides are derived from naturally occurring microorganisms—such as nematophagous fungi and beneficial bacteria—or bioactive compounds from plants and microbes. These agents offer an eco-friendly, residue-free alternative, making them a vital part of modern integrated pest management (IPM) systems. Product Enquiry What Why How FAQ What it is Bionematicides are advanced biological agents designed to control plant-parasitic nematodes, protecting crops and improving yields. Made from proprietary strains of fungi and bacteria, these eco-friendly solutions reduce chemical dependency, promote soil health, and provide sustainable, long-term pest management through mechanisms like parasitism, predation, and induced plant resistance. Perfect for integrated pest management systems, they ensure effective and environmentally safe nematode control. Why is it important 1. Environmental Safety Non-toxic to humans, animals, and non-target organisms, including beneficial soil microbes, insects, and earthworms. Biodegradable, leaving no harmful residues in the environment. Supports eco-conscious farming practices by reducing chemical inputs and their associated risks. 2. Soil Health Promotion Enhances soil biodiversity by fostering the growth of beneficial microorganisms. Restores soil structure and promotes nutrient cycling, reversing the damage caused by chemical nematicides. Strengthens the rhizosphere, enabling plants to thrive in nematode-prone soils. 3. Resistance Management Deploys multiple biological modes of action, such as parasitism, predation, and enzymatic activity, reducing the likelihood of nematode resistance. Adaptive solutions ensure sustained efficacy even under changing environmental conditions. 4. Cost-Effective and Sustainable Reduces reliance on expensive synthetic nematicides by offering a long-lasting and scalable solution. Aligns with consumer demand for chemical-free, organic produce while maintaining farm profitability. How it works Bionematicides target nematodes through diverse biological mechanisms that disrupt their life cycle and protect plant roots: 1. Predation Mechanism : Predatory fungi and nematophagous bacteria actively hunt and consume nematodes, reducing their populations in the soil. Example : Paecilomyces lilacinus traps nematode eggs and juveniles, digesting their contents to halt infestations. 2. Parasitism Mechanism : Certain fungi and bacteria attach to nematodes or penetrate their bodies, releasing enzymes and toxins that suppress development or reproduction. Example : Pochonia chlamydosporia colonizes nematode eggs, degrading their protective layers to prevent hatching. 3. Antagonism Mechanism : Beneficial microbes compete with nematodes for resources or release nematicidal compounds that inhibit nematode growth and reproduction. Example : Serratia marcescens produces protease enzymes that disrupt nematode cuticles and lifecycle stages. 4. Induced Plant Resistance Mechanism : Bionematicides stimulate systemic resistance in plants, activating natural defense pathways to withstand nematode infections. Example : Bacillus thuringiensis primes plants for stronger immune responses while producing Cry proteins that target nematodes directly. FAQ Content coming soon! Bionematicides Our Products Explore our range of premium Bionematicides tailored to meet your agricultural needs, offering natural and sustainable solutions for nematode control in your crops. Paecilomyces lilacinus Paecilomyces Lilacinus is a versatile biological agent employed as both a nematicide and seed treatment. It effectively targets and controls parasitic nematodes in agriculture. View Species Pochonia chlamydosporia Pochonia Chlamydosporia is a beneficial fungus effective against parasitic nematodes. It colonizes nematode eggs, preventing their development, offering sustainable pest control solutions. View Species Serratia marcescens Serratia marcescens is a highly adaptable Gram-negative bacterium renowned for its diverse metabolic capabilities and significant applications across environmental sustainability, agriculture, and biotechnology. This remarkable microorganism is characterized by its ability to produce prodigiosin, a vibrant red pigment, and its effectiveness in promoting plant health and bioremediating various pollutants. View Species Verticillium chlamydosporium Verticillium Chlamydosporium: Biological nematicide with enzyme action, sustainable pest management without environmental residue. View Species Resources Read all

  • Potash Manufacturer & Exporter | Indogulf BioAg | USA

    Indogulf BioAg is a Manufacturer & Global Exporter of Potash solubilising, Bacillus Mucilaginous, Frateuria Aurantia & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Potash Solubilizing Bacteria Potash Solubilizing Bacteria convert insoluble potassium compounds in the soil into forms that plants can absorb, improving potassium availability and supporting plant metabolic processes. Product Enquiry What Why How FAQ What it is Potash solubilizing bacteria (PSB) are a group of beneficial microorganisms that enhance the availability of potassium in the soil. Potassium is a vital nutrient for plants, essential for various physiological processes such as enzyme activation, photosynthesis, protein synthesis, and water regulation. However, a significant portion of soil potassium is present in insoluble forms that plants cannot readily absorb. PSB convert these insoluble forms into soluble potassium that plants can utilize. Why is it important Potassium is crucial for plant health and productivity , yet it often exists in forms that are not easily accessible to plants. The importance of potash solubilizing bacteria includes: Enhanced Nutrient Availability: PSB increase the availability of potassium, promoting healthier and more vigorous plant growth. Improved Soil Fertility: By converting insoluble potassium compounds into forms accessible to plants, PSB contribute to overall soil fertility and plant nutrition. Sustainable Agriculture: Utilizing PSB can reduce the reliance on chemical potassium fertilizers, leading to more environmentally friendly and sustainable farming practices. How it works Potash solubilizing bacteria employ several mechanisms to convert insoluble potassium into soluble forms: Acid Production: PSB produce organic acids such as citric acid, oxalic acid, and tartaric acid. These acids help in dissolving potassium-bearing minerals (such as feldspar and mica) by lowering the pH and releasing soluble potassium ions that plants can absorb. Enzymatic Activity: Some PSB produce enzymes that break down complex potassium compounds in the soil, converting them into simpler, soluble forms that are available for plant uptake. Chelation: PSB can produce chelating agents that bind to potassium ions, effectively solubilizing them and making them available to plants. By employing these mechanisms, potash solubilizing bacteria play a crucial role in enhancing potassium availability in the soil, supporting plant health, and contributing to sustainable agricultural practices. FAQ Content coming soon! Potash Solubilizing Bacteria Our Products Explore our range of premium Potash Solubilizing Bacteria strains tailored to meet your agricultural needs, facilitating the availability of potassium for vital plant functions. Bacillus mucilaginosus Bacillus mucilaginosus is a naturally occurring potassium solubilizing bacterium, that naturally alleviates the K deficiency of in plants by transforming insoluble mineral potassium in the soil into bioavailable forms, ensuring optimal environment for plant root uptake. Its application is particularly valuable in soils with limited potassium availability, improving plant health and soil biodiversity. View Species Frateuria aurantia Frateuria aurantia is a beneficial bacterium solubilizing potassium present in the soil, converting it into a form that plants can utilize. This product is recommended for soils with potassium deficiency. View Species 1 1 ... 1 ... 1 Resources Read all

  • Biofungicides for plants - Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Fungcide for plants, bacillus subtilis, Lactobacillus Plantarum, Pseudomonas SPP & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Biofungicides Biofungicides are effective biological agents that specifically control various fungal diseases in plants, significantly reducing the incidence of infections and promoting healthier, more resilient agricultural crops. Product Enquiry What Why How FAQ What it is Biofungicides are natural or biological agents used to control fungal diseases in crops. These agents can include beneficial fungi, bacteria, viruses, and other microorganisms that suppress fungal pathogens. Biofungicides offer an environmentally friendly alternative to synthetic fungicides, reducing chemical inputs and promoting sustainable agricultural practices. Why is it important Environmental Safety : Biofungicides are typically less harmful to non-target organisms and have minimal impact on beneficial insects, pollinators, and natural predators. Resistance Management : Biofungicides can help manage resistance issues that arise with synthetic fungicides, as they employ multiple modes of action against fungal pathogens. Residue Management : Biofungicides often leave little to no residues on crops, addressing concerns related to pesticide residues in food and the environment. How it works Biofungicides control fungal diseases through various mechanisms: Antagonism : Beneficial microorganisms compete with pathogenic fungi for nutrients and space, inhibiting their growth and colonization on plant surfaces. Parasitism : Some biofungicides parasitize fungal pathogens by penetrating their cells or producing enzymes that degrade fungal cell walls. Induced Resistance : Biofungicides can trigger systemic acquired resistance (SAR) in plants, enhancing their natural defense mechanisms against fungal infections. Antibiosis : Biofungicides produce secondary metabolites or antibiotics that directly inhibit fungal growth and spore germination. Biofungicides are often integrated into holistic disease management strategies, such as integrated pest management (IPM) programs, where they complement cultural practices and crop rotation to enhance efficacy. FAQ Content coming soon! Biofungicides Our Products Explore our range of premium Biofungicides tailored to meet your agricultural needs, providing effective and environmentally friendly protection against fungal diseases. Ampelomyces quisqualis Ampelomyces quisqualis is a mycoparasitic fungus widely known for its ability to parasitize powdery mildew fungi, making it an important biological control agent in agriculture. It infects and disrupts the reproductive structures of powdery mildew pathogens, reducing their spread and impact on crops. This fungus thrives on a variety of host plants, providing eco-friendly and sustainable solutions for managing powdery mildew in fruits, vegetables, and ornamental plants. Its natural mode of action minimizes the need for chemical fungicides, supporting integrated pest management strategies and promoting environmental health. View Species Bacillus subtilis Bacillus subtilis is a Gram-positive, endospore-forming bacterium widely studied for its roles in agriculture, biotechnology, and molecular biology. It functions as a biocontrol agent by producing antimicrobial compounds, enhances plant growth via phytohormone production and nutrient solubilization, and participates in bioremediation by degrading organic pollutants. Its utility in industrial processes stems from its production of enzymes, antibiotics, and biopolymers. As a model organism, B. subtilis provides insights into sporulation, biofilm formation, and gene regulation, underscoring its scientific and practical significance. View Species Bacillus tequilensis Bacillus tequilensis is a Gram-positive, endospore-forming bacterium with significant roles in agriculture and biotechnology. It enhances plant growth via phytohormone synthesis, nutrient solubilization, and antimicrobial activity against pathogens. Additionally, it contributes to bioremediation by degrading organic pollutants and produces industrially relevant enzymes. Its resilience to environmental stress underscores its potential for applications in sustainable agriculture, bioprocessing, and environmental remediation. View Species Chaetomium cupreum Chaetomium cupreum is a filamentous ascomycete fungus known for its biocontrol and biodegradation capabilities. It suppresses plant pathogens like Fusarium through antifungal metabolites and contributes to organic matter recycling via lignocellulose degradation. Its production of hydrolytic enzymes highlights its potential in sustainable agriculture and industrial biotechnology. View Species Fusarium proliferatum Non-pathogenic strains of Fusarium proliferatum offer promising potential in agriculture and biotechnology. These strains contribute to nutrient cycling by decomposing organic matter, enhancing soil health and fertility. Additionally, they are explored for their ability to produce industrially valuable enzymes and secondary metabolites that can be harnessed for biotransformation processes. Their metabolic diversity makes non-pathogenic F. proliferatum strains valuable for sustainable practices in agriculture and innovative applications in biotechnology. View Species Lactobacillus plantarum Lactobacillus plantarum is a facultative heterofermentative bacterium with diverse applications in health, agriculture, food technology, and biotechnology. Known for its probiotic properties, it enhances gut health by modulating the microbiome, strengthening the intestinal barrier, and producing antimicrobial compounds that inhibit pathogens. In food systems, it drives fermentation processes, producing lactic acid and bioactive metabolites that preserve food and enhance nutritional value, including B vitamins and antioxidants. In agriculture, L. plantarum offers significant benefits by controlling bacterial plant diseases, enhancing seed germination and seedling growth, improving root development, and inducing plant defense mechanisms. It supports plant growth by improving nutrient availability, enriching soil microbiota, and suppressing phytopathogens through the production of organic acids and antimicrobial peptides. Its genetic adaptability and metabolic versatility also make it valuable for enzyme production, metabolic engineering, and bioremediation, highlighting its role in sustainable health, agriculture, and bioprocessing applications. View Species Pediococcus pentosaceus Pediococcus pentosaceus is a Gram-positive lactic acid bacterium widely recognized for its dual role as a probiotic and as a biofungicide in agriculture. It produces lactic acid and a suite of antimicrobial peptides known as pediocins, which inhibit a broad spectrum of plant pathogens. Beyond pathogen suppression, it promotes plant growth through nutrient solubilization and induction of systemic resistance. View Species Pseudomonas spp. Pseudomonas spp. are versatile Gram-negative bacteria widely recognized for their role in biological control and plant health management. These bacteria produce antimicrobial compounds, enzymes, and secondary metabolites that effectively suppress plant pathogens, including fungi and bacteria, reducing disease incidence in crops. In agriculture, Pseudomonas spp. serve as eco-friendly alternatives to chemical pesticides, supporting sustainable farming practices. They also enhance plant stress tolerance by improving nutrient availability, promoting root growth, and inducing systemic resistance in plants. Their multifaceted benefits make Pseudomonas spp. essential for integrated pest management and environmentally responsible agriculture. View Species Trichoderma harzianum Trichoderma harzianum is a beneficial fungus widely used in agriculture for its biocontrol properties and plant growth-promoting effects. It manages fungal pathogens and soil-dwelling nematodes by producing antifungal metabolites and parasitizing harmful fungi, protecting crops from diseases. In addition to disease management, T. harzianum enhances seed germination, promotes robust plant growth, and strengthens plant defense mechanisms. Its ability to improve soil health and plant resilience makes it a vital tool in sustainable agriculture and integrated pest management strategies. View Species Trichoderma spp. Trichoderma spp. are widely recognized for their biocontrol capabilities in managing plant pathogens and soil-dwelling nematodes. These fungi displace causative agents by competing for resources and space, effectively reducing colonization opportunities for harmful fungi. Additionally, Trichoderma spp. produce enzymes and antimicrobial compounds that suppress the growth of plant pathogenic fungi, making them essential for sustainable agriculture and integrated pest management. View Species Trichoderma viride Trichoderma viride is a beneficial fungus widely used in agriculture for its ability to manage fungal pathogens and soil-dwelling nematodes. It enhances the stress tolerance of plant hosts and provides protection against fungal diseases by producing antifungal compounds and promoting plant defense mechanisms. Its role in improving plant resilience and controlling soil-borne pathogens makes it a key tool in sustainable agriculture and integrated pest management practices. View Species 1 1 ... 1 ... 1 Resources Read all

  • Probiotics - Manufacturer & Exporter - Indogulf BioAg

    Probiotics are live microorganisms, primarily bacteria and yeast, that confer health benefits when consumed in adequate amounts. They are found in various foods and supplements and are known for their positive effects on the gut microbiome. < Microbial Species Probiotics We provide diverse bacterial and yeast probiotic strains sourced from natural habitats. Available in individual forms or ready-to-fill blends, our probiotics range from 5 billion to 200 billion CFU/g, supporting gut health for humans and animals. Product Enquiry What Why How FAQ What it is Probiotics are live microorganisms, primarily beneficial bacteria and yeast, that provide health benefits when consumed in adequate amounts. They are often referred to as "good" or "friendly" bacteria due to their role in maintaining a balanced gut microbiome. Probiotics can be found in a variety of foods, such as yogurt, kefir, sauerkraut, and kimchi, as well as in dietary supplements. These microorganisms work by colonizing the intestines, competing with harmful bacteria, and producing substances that inhibit the growth of pathogens. There are many different strains of probiotics, each with unique properties and benefits. Common strains include Lactobacillus and Bifidobacterium , which are known for their effectiveness in promoting digestive health and enhancing immune function. Why is it important Gut Health : Probiotics help maintain a balanced gut microbiome, which is crucial for proper digestion and nutrient absorption. Immune Support : They enhance immune function by promoting the growth of beneficial gut bacteria and inhibiting harmful pathogens. Animal Health : In animals, probiotics improve digestion, enhance nutrient absorption, and can reduce the incidence of gastrointestinal disorders. Mental Well-being : Emerging research suggests a connection between gut health and mental health, indicating probiotics may help alleviate symptoms of anxiety and depression. How it works Colonization : Probiotics adhere to the intestinal lining, where they multiply and establish a healthy microbial environment. Competition : By occupying space and resources, probiotics compete with harmful bacteria, reducing their ability to thrive and cause disease. Metabolite Production : Probiotics produce beneficial compounds, such as short-chain fatty acids (SCFAs), which nourish gut cells and promote a healthy gut barrier. Immune Modulation : Probiotics stimulate the production of immune cells and antibodies, enhancing the body's defense mechanisms against infections. FAQ Content coming soon! Probiotics Our Products Explore our premium Probiotics designed to enhance gut health and immunity for both humans and animals, promoting overall well-being and vitality through effective microbial balance. Bifidobacterium animalis Bifidobacterium animalis supports gut health, aids digestion, and boosts immunity, promoting a balanced intestinal flora for optimal digestive wellness. View Species Bifidobacterium bifidum Bifidobacterium bifidum supports digestive health and helps maintain a balanced gut microbiota for optimal digestion and nutrient absorption. View Species Bifidobacterium breve Bifidobacterium breve aids in digestion, enhances immune function, and promotes gut health in infants and children, ensuring healthy growth and development. View Species Bifidobacterium infantis Bifidobacterium infantis plays a vital role in digestion and helps establish a healthy gut environment, especially in infants during early development. View Species Bifidobacterium longum Bifidobacterium longum supports gut health, aids digestion, and helps reduce inflammation in the intestines, contributing to overall wellness. View Species Clostridium butyricum Clostridium butyricum produces butyrate, which nourishes colon cells, enhances gut barrier function, and supports overall gut health and metabolism. View Species Lactobacillus acidophilus Lactobacillus acidophilus helps digest lactose, improves gut health, and boosts the immune system, supporting overall digestive wellness. View Species Lactobacillus bulgaricus Lactobacillus bulgaricus aids in lactose digestion, promotes gut health, and is commonly used in yogurt production for probiotic benefits. View Species Lactobacillus casei Lactobacillus casei supports digestive health, enhances immune function, and helps balance gut flora, contributing to a healthy digestive tract. View Species Lactobacillus fermentum Lactobacillus fermentum aids in digestion, supports immune health, and has antioxidant properties that benefit gut health and overall well-being. View Species Lactobacillus gasseri Lactobacillus gasseri promotes gut health, supports weight management, and aids in digestion, helping maintain a healthy weight for optimal overall wellness. View Species Lactobacillus helveticus Lactobacillus helveticus helps improve digestion, boosts immune health, and may reduce anxiety and stress through its calming effects. View Species Lactobacillus johnsonii Lactobacillus johnsonii enhances gut health, supports immune function, and helps maintain a balanced intestinal microbiota for optimal health. View Species Lactobacillus lactis Lactobacillus lactis promotes gut health, aids in digestion, and enhances immune responses, supporting overall gastrointestinal health. View Species Lactobacillus paracasei Lactobacillus paracasei supports immune function, aids digestion, and helps maintain a balanced gut microbiome for improved gut health. View Species Lactobacillus reuteri Lactobacillus reuteri promotes digestive health, supports immune function, and may reduce colic in infants, improving overall comfort. View Species Lactobacillus rhamnosus Lactobacillus rhamnosus supports gut health, enhances immune function, and helps prevent gastrointestinal infections for better digestive health. View Species Lactococcus lactis Lactococcus lactis aids in dairy fermentation, supports gut health, and enhances immune responses, contributing to a balanced gut flora. View Species 1 2 1 ... 1 2 ... 2 Resources Read all

  • Denitrification - Manufacturer & Exporter | Indogulf BioAg

    Paracoccus Denitrificans is a beneficial bacteria that is known for its nitrate reducing properties by its ability of converting nitrate to nitrogen gas. < Microbial Species Denitrification Denitrification is a complex microbial process that plays a central role in the nitrogen cycle, facilitating the transformation of nitrates (NO₃⁻) and nitrites (NO₂⁻) into gaseous forms such as nitrogen gas (N₂), nitric oxide (NO), and nitrous oxide (N₂O). This reduction process is carried out predominantly by facultative anaerobic bacteria under oxygen-limited (anoxic) conditions. The pathway involves multiple enzymatic steps mediated by specialized enzymes, each catalyzing a specific reduction reaction: Nitrate reductase (Nar or Nap): Reduces nitrate (NO₃⁻) to nitrite (NO₂⁻). Nitrite reductase (Nir): Converts nitrite to nitric oxide (NO). Nitric oxide reductase (Nor): Reduces NO to nitrous oxide (N₂O). Nitrous oxide reductase (Nos): Converts N₂O to dinitrogen gas (N₂), completing the process. Product Enquiry What Why How Additional Info FAQ What it is Denitrification is a critical microbial process in the nitrogen cycle where nitrate (NO₃⁻) is reduced to nitrogen gas (N₂) or nitrous oxide (N₂O), returning nitrogen to the atmosphere. This transformation, primarily facilitated by specialized bacteria under low oxygen (anoxic) conditions, plays a pivotal role in mitigating nitrogen pollution, reducing nitrate leaching, and improving water quality. This process occurs naturally in saturated soils, wetlands, and waterlogged areas but has become essential in engineered systems like wastewater treatment plants to manage excess nitrogen from agricultural, industrial, and municipal effluents. Why is it important Environmental Benefits Prevents eutrophication caused by nitrogen-rich runoff, which depletes oxygen in aquatic ecosystems and triggers harmful algal blooms. Mitigates groundwater contamination by reducing nitrate levels, ensuring safe drinking water. Agricultural and Industrial Applications Helps maintain soil health by balancing nitrogen levels, ensuring sustained crop productivity. Reduces the environmental impact of nitrogen-rich effluents from industries like food processing, textiles, and pharmaceuticals. The Science Behind Denitrification Denitrification is a multi-step process where bacteria use nitrate as an electron acceptor in the absence of oxygen, reducing it sequentially through: Nitrate (NO₃⁻) → Nitrite (NO₂⁻) → Nitric Oxide (NO) → Nitrous Oxide (N₂O) → Nitrogen Gas (N₂) Key enzymes involved include: Nitrate Reductase (Nar): Converts nitrate to nitrite. Nitrite Reductase (Nir): Reduces nitrite to nitric oxide. Nitric Oxide Reductase (Nor): Converts nitric oxide to nitrous oxide. Nitrous Oxide Reductase (Nos): Final step to nitrogen gas. Factors Influencing Denitrification Oxygen Levels : Requires anoxic conditions but is sensitive to oxygen interference. Organic Carbon Availability : Serves as an energy source for bacteria. Organic amendments or endogenous carbon sources are crucial. Temperature : Optimal bacterial activity occurs between 20–30°C, but certain strains function in wider ranges. pH : Ideal range is 6.5–8.0; deviations reduce efficiency. Carbon-to-Nitrogen Ratio (C/N) : Higher ratios improve denitrification rates. How it works Denitrification is a multi-step microbial process where nitrates (NO₃⁻) are sequentially reduced to nitrogen gas (N₂) or nitrous oxide (N₂O), effectively removing nitrogen from soil or water systems. This process is carried out under anoxic (oxygen-limited) conditions and involves specialized bacteria that utilize nitrate as an alternative electron acceptor. Here is how the process works: Sequential Reduction Steps The denitrification process involves the stepwise reduction of nitrate: Nitrate (NO₃⁻) is reduced to Nitrite (NO₂⁻) by the enzyme Nitrate Reductase . Nitrite (NO₂⁻) is further reduced to Nitric Oxide (NO) by Nitrite Reductase . Nitric Oxide (NO) is converted to Nitrous Oxide (N₂O) by Nitric Oxide Reductase . Nitrous Oxide (N₂O) is finally reduced to Nitrogen Gas (N₂) by Nitrous Oxide Reductase , completing the process. Role of Denitrifying Bacteria Denitrification is facilitated by a diverse group of bacteria, including: Pseudomonas spp . , Paracoccus denitrificans , and Thiobacillus denitrificans : Facultative anaerobes that dominate under anoxic conditions. Bacillus spp . and other facultative anaerobes capable of switching between aerobic and anaerobic metabolism based on oxygen availability. These bacteria thrive in environments with limited oxygen, such as waterlogged soils, wetlands, and the anoxic zones of wastewater treatment systems. FAQ Content coming soon! Additional Info What bacteria are involved in denitrification? Denitrification is carried out by a diverse group of facultative anaerobic bacteria that can switch between using oxygen and nitrates for respiration. The most important denitrifying bacteria include: pmc.ncbi.nlm.nih+1 Pseudomonas species These are the dominant bacterial genus in most denitrifying systems. Key species include: frontiersin+1 Pseudomonas stutzeri - The most widely studied and distributed denitrifying bacterium pmc.ncbi.nlm.nih+1 Pseudomonas mendocina and Pseudomonas putid a - Common in both aquatic and soil environments nature Pseudomonas aeruginosa - Known for its high denitrification efficiency sciencedirect Other important denitrifying bacteria include: Paracoccus denitrificans - A model organism for denitrification research pmc.ncbi.nlm.nih Alcaligenes species - Marine and terrestrial denitrifiers patents.google Bacillus species - Soil-dwelling facultative anaerobes wikipedia Thiobacillus denitrificans - Specialized for sulfur-based denitrification Rheinheimera, Ochrobactrum, and Gemmobacter species - Found in aquatic systems nature These bacteria are found naturally in soils, sediments, groundwater, and wastewater treatment systems where they play crucial roles in nitrogen cycling. pmc.ncbi.nlm.nih+1 Pseudomonas denitrifying bacteria? Yes, Pseudomonas is one of the most important groups of denitrifying bacteria. Multiple Pseudomonas species are well-documented denitrifiers: pmc.ncbi.nlm.nih+1 Pseudomonas stutzeri is considered a model organism for denitrification studies and is widely distributed in environmental systems pmc.ncbi.nlm.nih Pseudomonas mendocina and Pseudomonas putida are dominant culturable aerobic denitrifiers in river systems nature Pseudomonas aeruginosa has been used to develop high-efficiency denitrifying consortia for wastewater treatment sciencedirect Pseudomonas bacteria contain all the necessary genes for complete denitrification, including napA (nitrate reductase), narG (nitrate reductase), nirS (nitrite reductase), norB (nitric oxide reductase), and nosZ (nitrous oxide reductase). They are particularly valuable because they can perform heterotrophic nitrification and aerobic denitrification, making them effective for nitrogen removal even in oxygen-present conditions. pmc.ncbi.nlm.nih Is Azotobacter a denitrifying bacterium? Azotobacter is primarily a nitrogen-fixing bacterium, not a denitrifying bacterium. However, research shows that some Azotobacter species have limited denitrification capabilities: frontiersin Azotobacter indicum and Azotobacter chroococcum can reduce nitrates to nitrites and nitric oxide under anaerobic conditions, but this is not their primary function pubmed.ncbi.nlm.nih This denitrification ability is unusual because Azotobacter species are obligate aerobes (require oxygen) and are primarily known for atmospheric nitrogen fixation pmc.ncbi.nlm.nih+1 The main role of Azotobacter remains converting atmospheric nitrogen (N₂) into ammonia for plant use, making them important biofertilizers rather than denitrifiers. Their limited denitrification capability appears to be a secondary metabolic pathway that operates under specific anaerobic conditions. pubmed.ncbi.nlm.nih+1 What is the role of denitrifying bacteria? Denitrifying bacteria serve several critical environmental and agricultural functions: xzbiosludge+1 Environmental Protection Prevent water pollution by removing excess nitrates from groundwater and surface water xzbiosludge Prevent eutrophication in aquatic systems by reducing nitrogen-rich runoff that causes harmful algal blooms xzbiosludge Reduce greenhouse gas emissions by converting nitrous oxide (N₂O) to harmless nitrogen gas (N₂) vedantu Nitrogen Cycle Completion Return nitrogen to the atmosphere by converting nitrates back to nitrogen gas, completing the natural nitrogen cycle xzbiosludge Balance soil nitrogen levels to maintain optimal conditions for plant growth xzbiosludge Remove excess nitrogen from agricultural and industrial waste streams xzbiosludge Wastewater Treatment Applications Biological nutrient removal in sewage treatment plants to meet discharge standards cordis.europa Industrial effluent treatment for food processing, pharmaceutical, and chemical industries Tertiary treatment to achieve ultra-low nitrogen levels in treated wastewater Agricultural Benefits Soil health maintenance by preventing nitrate accumulation that can harm beneficial soil microorganisms Sustainable farming support by managing nitrogen cycling in agricultural systems How to get denitrifying bacteria? Denitrifying bacteria can be obtained through several isolation and cultivation methods: core+1 Natural Sources Activated sludge from wastewater treatment plants - richest source of diverse denitrifiers pmc.ncbi.nlm.nih Soil samples from agricultural fields, wetlands, and waterlogged areas pmc.ncbi.nlm.nih Sediment samples from rivers, lakes, and marine environments nature Groundwater and contaminated subsurface environments pmc.ncbi.nlm.nih Laboratory Isolation Methods Enrichment Cultivation Use selective growth media containing nitrate as the sole electron acceptor under anaerobic conditions core+1 Optimal media composition includes tryptic soy broth with nitrate supplementation core Incubation conditions: 30°C under nitrogen atmosphere or in anaerobic chambers frontiersin+1 Isolation Procedure Initial enrichment in liquid medium for 7-10 days under anaerobic conditions pmc.ncbi.nlm.nih Serial transfers (3-4 transfers) to ensure denitrifier selection pmc.ncbi.nlm.nih Plating on solid medium to isolate individual colonies pmc.ncbi.nlm.nih Confirmation testing using nitrate/nitrite reduction assays nature+1 Commercial Sources Specialized bacterial culture collections that maintain denitrifying strains Environmental biotechnology companies that produce denitrifying bacterial inoculants Research institutions with established denitrifier collections Growth rate of denitrifying bacteria Denitrifying bacteria exhibit variable growth rates depending on species, substrate, and environmental conditions: frontiersin+1 Typical Generation Times Pseudomonas stutzeri Aerobic conditions: 2.8 hours generation time frontiersin Anaerobic conditions: 4-6 hours with acetate substrate pmc.ncbi.nlm.nih Paracoccus denitrificans With acetate: 4-6 hours doubling time pmc.ncbi.nlm.nih With formate: ~10 hours doubling time pmc.ncbi.nlm.nih With hydrogen: ~20 hours doubling time pmc.ncbi.nlm.nih Environmental Factors Affecting Growth Rate Temperature Optimal range: 30-37°C for most mesophilic denitrifiers patents.google +1 Marine species: Optimal at 35°C patents.google Cold-adapted species: Can grow at 4°C but with longer generation times frontiersin Substrate Type Organic carbon sources (acetate, lactate) support fastest growth pmc.ncbi.nlm.nih Simple carbon sources like acetate provide better growth rates than complex substrates Carbon-to-nitrogen ratio affects growth efficiency and rate pmc.ncbi.nlm.nih Oxygen Levels Aerobic growth generally faster than anaerobic denitrification frontiersin Microaerobic conditions often optimal for aerobic denitrifiers nature pH and Environmental Conditions Optimal pH: 6.5-8.0 for most denitrifiers patents.google Growth monitoring: Typically monitored by optical density changes over 24-48 hour periods pmc.ncbi.nlm.nih Batch culture conditions: Growth curves show exponential phase lasting 12-24 hours under optimal conditions The growth rates make denitrifying bacteria practical for both environmental applications and laboratory research, with most strains achieving significant biomass within 1-3 days under optimal conditions. patents.google +1 Denitrification Our Products Explore our range of premium Denitrification products tailored to meet your agricultural needs, optimizing nitrogen cycling and minimizing environmental impact. Paracoccus denitrificans Paracoccus denitrificans is a beneficial bacterium known for its nitrate-reducing properties, specifically its ability to convert nitrate to nitrogen gas. View Species 1 1 ... 1 ... 1 Resources Read all

  • Sulphur Solubilizing Bacteria - Manufacturer & Exporter

    Indogulf BioAg is a Manufacturer & Global Exporter of Sulphur Solubilizing, Acidithiobacillus Thioxidans, Thiobacillus Novellus & other Bacterias. Contact us @ +1 437 774 3831 What Why How FAQ What it is Sulfur solubilizing bacteria (SSB) are a specialized group of microorganisms that have the ability to convert insoluble forms of sulfur into soluble forms that plants can readily absorb. These bacteria play a critical role in the sulfur cycle, enhancing the availability of this essential nutrient in the soil. Why is it important Sulfur is a vital nutrient for plant growth, involved in the formation of amino acids, vitamins, and enzymes. Despite its importance, sulfur is often present in forms that plants cannot directly utilize. Sulfur solubilizing bacteria help bridge this gap by transforming these insoluble forms into plant-available sulfate (SO4^2-). The significance of sulfur solubilizing bacteria includes: Improved Nutrient Availability: By converting insoluble sulfur compounds into soluble forms, these bacteria ensure that plants have adequate access to sulfur, promoting healthier growth and development. Enhanced Soil Health: Sulfur solubilizing bacteria contribute to overall soil fertility, creating a more balanced and nutrient-rich environment for plants. Sustainable Farming Practices: Utilizing SSB can reduce the dependence on chemical sulfur fertilizers, leading to more sustainable and environmentally friendly agricultural practices. How it works Sulfur solubilizing bacteria employ a variety of mechanisms to solubilize sulfur compounds in the soil: Oxidation: Some SSB oxidize elemental sulfur (S) or sulfide minerals (such as pyrite, FeS2) to produce sulfuric acid (H2SO4). This acidification process dissolves sulfur compounds, releasing sulfate ions (SO4^2-) that plants can absorb. Production of Organic Acids: Certain SSB produce organic acids, such as citric acid or oxalic acid, which chelate (bind to) insoluble sulfur compounds, making them more soluble and available for plant uptake. Enzymatic Action: Enzymes produced by SSB can break down complex sulfur-containing organic matter, releasing sulfate ions into the soil. By these processes, sulfur solubilizing bacteria enhance the bioavailability of sulfur in the soil, supporting plant nutrition and growth. FAQ Content coming soon! < Microbial Species Sulphur Solubilizing Bacteria Sulphur Solubilizing Bacteria enhance the availability of sulfur in the soil by converting insoluble sulfur compounds into forms that plants can easily uptake, improving plant nutrition and growth. Product Enquiry Sulphur Solubilizing Bacteria Our Products Explore our range of premium Sulphur Solubilizing Bacteria strains tailored to meet your agricultural needs, enhancing sulfur availability for optimal plant growth. Acidithiobacillus novellus Acidithiobacillus novellus sulfur oxidation in soil, improving nutrient availability for crops, particularly aiding in sulfur deficiency in soils, thereby boosting yield and plant health. View Species Acidithiobacillus thiooxidans Acidithiobacillus thiooxidans is a highly efficient sulfur-oxidizing bacterium that converts elemental sulfur and sulfide minerals into sulfate, enhancing soil nutrient availability and supporting crop growth. Its acidophilic nature allows it to thrive in extreme environments, making it a vital tool for bioremediation efforts, such as treating acid mine drainage and neutralizing soil contamination caused by heavy metals. Additionally, A. thiooxidans is widely used in bioleaching processes to extract valuable metals from low-grade ores, contributing to sustainable industrial and environmental practices. View Species Thiobacillus novellus Thiobacillus novellus, an effective inoculant that oxidizes sulfur, enhancing nutrient availability for plants while supporting bioremediation in contaminated soils. View Species Thiobacillus thiooxidans Acidithiobacillus thiooxidans is a potent sulfur-oxidizing bacterium that enhances soil sulfur availability, drives bioleaching of metals, and contributes to wastewater and sludge treatment, supporting sustainable agriculture and bioremediation. View Species 1 1 ... 1 ... 1 Resources Read all

  • Plant Growth Promoters - Manufacturer & Exporter - Indogulf BioAg

    Plant Growth Promoters to promote plant roots development and improve growth. It also has the ability to produce enzymes to suppress plant pathogens and eventually kill them. < Microbial Species Plant Growth Promoters Plant Growth Promoters products, often containing beneficial microorganisms or natural compounds, promote overall plant health and development, enhancing growth rates and crop yields. Product Enquiry What Why How FAQ What it is Plant growth promoters, also known as phytohormones, are naturally occurring chemical substances that regulate various physiological processes in plants. These hormones act as chemical messengers, influencing growth, development, and responses to environmental stimuli. The main classes of plant hormones include auxins, cytokinins, gibberellins, ethylene, and abscisic acid, each playing specific roles in plant growth and adaptation. Why is it important Regulation of Growth : Plant hormones control fundamental processes such as cell elongation, cell division, and differentiation, which are essential for overall plant growth and development. Developmental Processes : Hormones like auxins and cytokinins regulate processes such as seed germination, root and shoot growth, flowering, and fruit development. Environmental Responses : Hormones such as ethylene and abscisic acid help plants respond to environmental stresses such as drought, flooding, temperature extremes, and pathogen attacks. Crop Yield and Quality : Proper hormone regulation can enhance crop yield by optimizing growth patterns, improving nutrient uptake, and ensuring efficient use of resources. How it works Auxins : Stimulate cell elongation, regulate apical dominance, promote phototropism and gravitropism. Production : Synthesized in shoot tips, young leaves, and developing seeds. Cytokinins : Promote cell division, delay aging (senescence), enhance nutrient mobilization, and counteract apical dominance. Production : Produced in actively growing tissues like roots, embryos, and fruits. Gibberellins : Stimulate stem elongation, promote seed germination, regulate flowering and fruit development. Production : Synthesized in roots, young leaves, and seeds. Ethylene : Regulate fruit ripening, leaf and flower senescence, and response to stress (e.g., flooding, injury). Production : Produced in response to stress and during fruit ripening. Abscisic Acid (ABA) : Control seed dormancy and germination, regulate stomatal closure in response to drought, and promote stress tolerance. Production : Synthesized in response to stress conditions and present in seeds and mature leaves. Interaction and Regulation : Plant hormones often interact synergistically or antagonistically to coordinate growth and development processes. Environmental factors influence hormone production and their effects, allowing plants to adapt and thrive in varying conditions. Understanding the roles and mechanisms of plant growth hormones is crucial for optimizing agricultural practices, improving crop productivity, and enhancing plant resilience to environmental challenges. FAQ Content coming soon! Plant Growth Promoters Our Products Explore our range of premium Plant Growth Promoters tailored to meet your agricultural needs, stimulating robust growth and maximizing yield potential. Bacillus amyloliquefaciens Bacillus amyloliquefaciens, produces plant growth hormones, suppresses pathogens with enzymes, acts as biofertilizer and biopesticide, improves soil fertility, safe for non-target species and humans. View Species Bacillus azotoformans Used as seed inoculant, enhances germination and root development, improves water and nutrient transport, environmentally safe. View Species Bacillus circulans Bacillus circulans produces indoleacetic acid, solubilizes phosphorus improving absorption, enhances plant growth and yield, safe and eco-friendly. View Species Bacillus pumilus Bacillus pumilus produces antibiotics against pathogens, enhances nutrient uptake and drought tolerance, effective biocontrol agent, environmentally safe. View Species Pseudomonas fluorescens Pseudomonas fluorescens suppresses soil-borne pathogens, produces antibiotics and siderophores, enhances nutrient availability, improves root growth and disease resistance. View Species Pseudomonas putida Pseudomonas putida produces growth-promoting substances, degrades organic pollutants in soil, improves soil structure and nutrient availability, enhances plant stress tolerance. View Species Rhodococcus terrae Rhodococcus terrae enhances soil structure and nutrient availability, degrades organic pollutants, promotes plant growth with growth-promoting substances, improves root development and stress tolerance. View Species Vesicular arbuscular mycorrhiza Vesicular Arbuscular Mycorrhiza (VAM) is a beneficial fungus that enhances plant root absorption, improves soil structure, and increases nutrient uptake. It forms a symbiotic relationship with roots, boosting plant growth, drought resistance, and soil fertility for healthier, more resilient crops. View Species Williopsis saturnus Williopsis saturnus enhances nutrient uptake, improves soil fertility, suppresses soil-borne pathogens, promotes root development and yield, contributes to environmental sustainability, effective in agriculture. View Species 1 1 ... 1 ... 1 Resources Read all

  • Aspergillus Niger Manufacturer & Exporter | Bio Compost Degrading | Microbial Species | Indogulf BioA

    Aspergillus niger is a beneficial filamentous fungus widely used in agriculture for its ability to produce enzymes that enhance composting and improve soil fertility. Known for breaking down organic matter through enzymes - cellulases, amylases, and pectinases, Asp. niger accelerates the decomposition of agricultural waste into nutrient-rich compost. This compost acts as a natural fertilizer, enriching the soil with essential nutrients, improving its structure, and promoting water retention. Additionally, Asp. niger contributes to bioremediation by degrading harmful chemicals and pollutants, making it an eco-friendly solution for sustainable waste management. As a fungal activator, it plays a crucial role in integrated pest management by indirectly suppressing soil-borne pathogens and pests, fostering healthier and more resilient crops. < Microbial Species Aspergillus niger Aspergillus niger is a beneficial filamentous fungus widely used in agriculture for its ability to produce enzymes that enhance composting and improve soil fertility. Known… Show More Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Download Brochure Benefits Suppresses pathogens This fungus can inhibit the growth of harmful pathogens in compost, contributing to safer and healthier composting practices. Enhances soil fertility The activities of Aspergillus niger contribute to nutrient release and soil structure improvement, enhancing fertility over time. Accelerates composting process Aspergillus niger produces enzymes that break down organic matter more efficiently, speeding up the composting process. Reduces composting odor By breaking down organic material effectively, Aspergillus niger helps reduce unpleasant odors associated with composting. Dosage & Application Additional Info Scientific References Mode of Action FAQ Scientific References Padmavathi, T. (2015). Optimization of phosphate solubilization by Aspergillus niger using Plackett-Burman and response surface methodology. Chilean Journal of Agricultural Research , 75(3), 310-316. scielo Asadi, M., et al. (2019). Improving municipal solid waste compost process by cycle time reduction through Aspergillus niger IBRC-M 30095 inoculation. Environmental Science and Pollution Research , 26(8), 7414-7424. pmc.ncbi.nlm.nih Yang, M., et al. (2022). Aspergillus niger as a biological input for improving vegetable crop productivity and soil health. Scientific Reports , 12, 4756. pmc.ncbi.nlm.nih Zhang, L., et al. (2023). Combination of Aspergillus niger MJ1 with nitrogen-fixing bacteria improved crop quality and soil properties in barrier soil. Frontiers in Microbiology , 14, 1064358. frontiersin Kumar, S., et al. (2021). Profiling multi-enzyme activities of Aspergillus niger strains growing on different carbon sources for biotechnological applications. Microbial Cell Factories , 20, 234. pmc.ncbi.nlm.nih Rodríguez, H., et al. (2024). Phosphate-solubilizing microorganisms stimulate physiological responses with straw compost assistance. Agronomy , 14(5), 1008. mdpi Chen, W., et al. (2022). Metabolomic profiling and bio-efficacy of Aspergillus niger against soil-borne plant pathogens. Frontiers in Microbiology , 14, 1142144. frontiersin Ahmed, A., et al. (2021). Bioremediation of synthetic and industrial effluents by Aspergillus niger isolated from contaminated soil. Water Research , 185, 116248. pmc.ncbi.nlm.nih Mode of Action Phosphate Solubilization Mechanism Aspergillus niger employs multiple biochemical pathways to mobilize insoluble phosphorus compounds. The fungus produces various organic acids including citric acid (up to 150 g/L), gluconic acid, and oxalic acid that effectively lower soil pH and chelate phosphorus-binding cations. The acidification process dissolves tricalcium phosphate, aluminum phosphate, and iron phosphate, converting them into readily available forms for plant uptake. pjoes+3 Enzymatic Decomposition of Organic Matter The fungus secretes a comprehensive enzyme complex including cellulases (up to 10.50 U/mL), amylases (4.47 U/mL), pectinases, and xylanases that systematically break down lignocellulosic materials. These enzymes operate synergistically to depolymerize complex carbohydrates, proteins, and lignin compounds, accelerating the transformation of crop residues and organic waste into nutrient-rich humus. sciencedirect+3 Biofilm Formation and Soil Colonization Aspergillus niger forms extensive hyphal networks and biofilms that enhance soil structure and water-holding capacity. The fungal mycelia create micro-aggregates that improve soil porosity, aeration, and root penetration while establishing beneficial associations with plant root systems. pmc.ncbi.nlm.nih+3 Heavy Metal Immobilization and Detoxification The fungus produces specialized metabolites and organic acids that bind heavy metals through chelation and precipitation mechanisms. This process effectively removes toxic metals from soil solution while preventing their uptake by plants, contributing to soil remediation and environmental safety. communities.springernature+3 Antimicrobial Compound Production Aspergillus niger synthesizes various bioactive compounds including antibiotics, antifungals, and growth inhibitors that suppress soil-borne pathogens. The competitive exclusion and direct antagonism reduce disease pressure while promoting beneficial microbial communities in the rhizosphere. pmc.ncbi.nlm.nih+2 Plant Growth Hormone Regulation The fungus influences plant endogenous hormone levels, particularly auxins and cytokinins, promoting root development and enhancing nutrient uptake efficiency. This hormonal modulation results in improved plant vigor, stress tolerance, and overall productivity. pmc.ncbi.nlm.nih+1 Additional Info Recommended Crops: Cereals, Millets, Pulses, Oilseeds, Fibre Crops, Sugar Crops, Forage Crops, Plantation crops, Vegetables, Fruits, Spices, Flowers, Medicinal crops, Aromatic Crops, Orchards, and Ornamentals. Compatibility: Compatible with Bio Pesticides, Bio Fertilizers, and Plant growth hormones but not with chemical fertilizers and chemical pesticides that may inhibit fungal activity. Shelf Life: Stable within 1 year from the date of manufacturing when stored under proper conditions. Packing: We offer tailor-made packaging as per customers' requirements including bulk packaging, small sachets, and customized formulations. pH Tolerance: Effective across a wide pH range from acidic (3.5) to alkaline (9.0) conditions, making it suitable for diverse soil types. Temperature Range: Optimal activity between 25-35°C with survival capability from 15-53°C. Application Rate: 2-5 kg per hectare depending on soil conditions and crop requirements. Certification: GRAS (Generally Recognized as Safe) status by FDA for agricultural applications. Dosage & Application Seed Coating/Seed Treatment: Mix 10-15 grams of Aspergillus niger with sufficient water to create a slurry. Coat 1 kg of seeds with this mixture, dry in shade for 2-4 hours, and sow or broadcast in the field. This provides early protection and growth stimulation. Seedling Treatment: Prepare a solution of 100 grams of Aspergillus niger in sufficient water. Dip seedling roots into the solution for 30 minutes before transplanting to establish beneficial fungal colonization. Soil Treatment: Mix 2.5-5 kg per hectare of Aspergillus niger with organic manure or compost. Incorporate the mixture into soil during land preparation or at the time of planting to enhance soil fertility and structure. Composting Application: Add 1-2 kg of Aspergillus niger per ton of organic waste at the beginning of composting process. Mix thoroughly to accelerate decomposition and improve compost quality within 18-25 days. Irrigation/Fertigation: Dissolve 2.5-5 kg per hectare of Aspergillus niger in irrigation water and apply through drip irrigation or soil drenching to establish rhizosphere colonization. Foliar Application: Mix 50 grams per 100 liters of water and spray during early morning or evening hours for enhanced plant protection and growth promotion. This comprehensive content provides all the missing information for the Aspergillus niger page, covering its multifunctional benefits in agriculture, detailed FAQ responses, scientific backing, mode of action mechanisms, and practical application guidelines. The content emphasizes the fungus's role in sustainable agriculture, soil health improvement, and eco-friendly farming practices while providing practical guidance for farmers and agricultural professionals. FAQ What is the primary function of Aspergillus niger in agriculture? Aspergillus niger functions as a powerful phosphate-solubilizing fungus that converts insoluble phosphorus compounds into plant-available forms while producing enzymes that accelerate organic matter decomposition and improve soil fertility. Get full information about primary function of Aspergillus niger in agriculture . How does Aspergillus niger improve composting efficiency? The fungus produces cellulases, pectinases, and xylanases that break down lignocellulosic materials rapidly, reducing composting time to 18 days while creating nutrient-rich, stable compost with improved agronomic value. Know more in details how does Aspergillus niger improve composting efficiency . Is Aspergillus niger safe for agricultural use? A: Yes, Aspergillus niger is classified as Generally Recognized as Safe (GRAS) by the FDA and is completely natural and non-toxic to plants, humans, and beneficial soil organisms. It is widely used in organic farming practices. Get full information about how Aspergillus niger safe for agricultural use . Can Aspergillus niger help with heavy metal contamination? Yes, the fungus effectively removes heavy metals from contaminated soils through organic acid production and chelation mechanisms, making it valuable for bioremediation applications. What crops benefit most from Aspergillus niger application? All major crop categories benefit, including vegetables, fruits, cereals, and legumes. Research shows particularly significant improvements in cucumber, lettuce, and other vegetable crops with enhanced yield and quality parameters. Check here what crops benefit most from Aspergillus niger application in details. How long does Aspergillus niger remain active in soil? The fungus establishes persistent populations in soil and remains active for several months, providing continuous benefits through phosphate solubilization, enzyme production, and organic matter decomposition. Get full information about how long does Aspergillus niger remain active in soil . Can Aspergillus niger be combined with other biofertilizers? Yes, it works synergistically with other beneficial microorganisms including nitrogen-fixing bacteria and mycorrhizal fungi to create comprehensive soil health management systems. What are the storage requirements for Aspergillus niger products? Store in a cool, dry place below 25°C away from direct sunlight to preserve spore viability and enzymatic activity. Follow product-specific instructions for optimal results. Related Products Aspergillus oryzae Cellulomonas carate Cellulomonas gelida Cellulomonas uda More Products Resources Read all

bottom of page