top of page

367 results found with an empty search

  • Phosphorous Solubilising Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Phosphorous solubilising, Bacillus Megaterium, Aspergillus, Pseudomonas & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Phosphorous Solubilizing Bacteria Phosphorous Solubilizing Bacteria convert insoluble phosphates into soluble forms that plants can absorb, improving phosphorus availability and promoting stronger root development. Product Enquiry What Why How FAQ What it is Phosphorus solubilizing bacteria (PSB) are a group of beneficial microorganisms that enhance the availability of phosphorus in the soil. Phosphorus is a crucial nutrient for plants, playing a key role in energy transfer, photosynthesis, and nutrient movement within the plant. However, much of the phosphorus in soil exists in insoluble forms that plants cannot absorb. PSB convert these insoluble forms into soluble phosphorus that plants can utilize. Why is it important Phosphorus is essential for plant growth, yet it is often a limiting nutrient in many soils due to its low solubility. The importance of phosphorus solubilizing bacteria includes: Enhanced Nutrient Availability : PSB increase the availability of phosphorus, promoting healthier and more robust plant growth. Improved Soil Fertility : By converting insoluble phosphorus compounds into forms accessible to plants, PSB contribute to overall soil fertility and ecosystem health. Sustainable Agriculture : Utilizing PSB can r educe the dependence on chemical phosphorus fertilizers , leading to more environmentally friendly and sustainable farming practices. How it works Phosphorus solubilizing bacteria employ several mechanisms to convert insoluble phosphorus into soluble forms: Organic Acid Production : PSB secrete organic acids such as citric acid, gluconic acid, and oxalic acid. These acids lower the pH around the bacteria, dissolving insoluble phosphate compounds and releasing soluble phosphorus ions that plants can absorb. Enzymatic Activity : Some PSB produce enzymes like phosphatases that break down organic phosphorus compounds into inorganic forms, making phosphorus available to plants. Ion Exchange Reactions : PSB can exchange ions in the soil , such as hydrogen ions (H+), with phosphate ions (PO4^3-), effectively mobilizing phosphorus from soil particles into the soil solution. By employing these mechanisms, phosphorus solubilizing bacteria play a vital role in enhancing phosphorus availability in the soil, supporting plant nutrition, and contributing to sustainable agricultural practices. FAQ Content coming soon! Phosphorous Solubilizing Bacteria Our Products Explore our range of premium Phosphorous Solubilizing Bacteria strains tailored to meet your agricultural needs, promoting phosphorus availability for robust plant growth. Aspergillus awamori Aspergillus awamori solubilizes unavailable phosphorus in acidic soil, enhancing plant nutrient uptake and drought resistance. Restores soil fertility through organic matter breakdown. View Species Bacillus firmus Bacillus firmus enhances phosphorus availability in soil, stimulates root growth, improves fruit quality, and protects against soil-borne diseases. Compatible with bio-pesticides and bio-fertilizers. View Species Bacillus megaterium Bacillus megaterium is a Gram-positive, endospore-forming rhizobacterium recognized for its high-efficiency solubilization of inorganic phosphate compounds. By producing organic acids and phosphatases, it enhances phosphorus bioavailability, promoting early crop establishment, accelerated phenological development, and improved root system architecture. In addition to nutrient mobilization, B. megaterium contributes to soil health by enhancing microbial diversity, facilitating organic matter decomposition, and improving soil structure. It also exhibits antagonistic activity against phytopathogens, supporting natural pest suppression and reducing reliance on chemical pesticides. Compatible with biofertilizers and biopesticides, B. megaterium integrates seamlessly into organic and integrated farming systems, contributing to increased nutrient-use efficiency, enhanced crop resilience, and sustainable yield improvement while enriching soil microbiome. View Species Bacillus polymyxa Bacillus polymyxa improves phosphorus availability by solubilizing phosphate, promotes plant growth through nitrogen fixation and hormone production, and aids bioremediation by breaking down organic pollutants—enhancing soil health for sustainable agriculture. View Species Pseudomonas putida Pseudomonas putida is a beneficial bacterium known for producing growth-promoting substances like indole-3-acetic acid (IAA), enhancing plant development and root architecture. It degrades organic pollutants, improving soil health and structure while making nutrients more bioavailable. Additionally, P. putida boosts plant stress tolerance by mitigating the effects of drought, salinity, and heavy metals, making it invaluable for sustainable agriculture and environmental remediation. View Species Pseudomonas striata Pseudomonas striata improves soil health, enhances root systems, increases plant drought tolerance, optimizes soil nutrition for sustained crop productivity. Compatible with bio-pesticides and bio-fertilizers. View Species 1 1 ... 1 ... 1 Resources Read all

  • Biofungicides for plants - Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Fungcide for plants, bacillus subtilis, Lactobacillus Plantarum, Pseudomonas SPP & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Biofungicides Biofungicides are effective biological agents that specifically control various fungal diseases in plants, significantly reducing the incidence of infections and promoting healthier, more resilient agricultural crops. Product Enquiry What Why How FAQ What it is Biofungicides are natural or biological agents used to control fungal diseases in crops. These agents can include beneficial fungi, bacteria, viruses, and other microorganisms that suppress fungal pathogens. Biofungicides offer an environmentally friendly alternative to synthetic fungicides, reducing chemical inputs and promoting sustainable agricultural practices. Why is it important Environmental Safety : Biofungicides are typically less harmful to non-target organisms and have minimal impact on beneficial insects, pollinators, and natural predators. Resistance Management : Biofungicides can help manage resistance issues that arise with synthetic fungicides, as they employ multiple modes of action against fungal pathogens. Residue Management : Biofungicides often leave little to no residues on crops, addressing concerns related to pesticide residues in food and the environment. How it works Biofungicides control fungal diseases through various mechanisms: Antagonism : Beneficial microorganisms compete with pathogenic fungi for nutrients and space, inhibiting their growth and colonization on plant surfaces. Parasitism : Some biofungicides parasitize fungal pathogens by penetrating their cells or producing enzymes that degrade fungal cell walls. Induced Resistance : Biofungicides can trigger systemic acquired resistance (SAR) in plants, enhancing their natural defense mechanisms against fungal infections. Antibiosis : Biofungicides produce secondary metabolites or antibiotics that directly inhibit fungal growth and spore germination. Biofungicides are often integrated into holistic disease management strategies, such as integrated pest management (IPM) programs, where they complement cultural practices and crop rotation to enhance efficacy. FAQ Content coming soon! Biofungicides Our Products Explore our range of premium Biofungicides tailored to meet your agricultural needs, providing effective and environmentally friendly protection against fungal diseases. Ampelomyces quisqualis Ampelomyces quisqualis is a mycoparasitic fungus widely known for its ability to parasitize powdery mildew fungi, making it an important biological control agent in agriculture. It infects and disrupts the reproductive structures of powdery mildew pathogens, reducing their spread and impact on crops. This fungus thrives on a variety of host plants, providing eco-friendly and sustainable solutions for managing powdery mildew in fruits, vegetables, and ornamental plants. Its natural mode of action minimizes the need for chemical fungicides, supporting integrated pest management strategies and promoting environmental health. View Species Bacillus subtilis Bacillus subtilis is a Gram-positive, endospore-forming bacterium widely studied for its roles in agriculture, biotechnology, and molecular biology. It functions as a biocontrol agent by producing antimicrobial compounds, enhances plant growth via phytohormone production and nutrient solubilization, and participates in bioremediation by degrading organic pollutants. Its utility in industrial processes stems from its production of enzymes, antibiotics, and biopolymers. As a model organism, B. subtilis provides insights into sporulation, biofilm formation, and gene regulation, underscoring its scientific and practical significance. View Species Bacillus tequilensis Bacillus tequilensis is a Gram-positive, endospore-forming bacterium with significant roles in agriculture and biotechnology. It enhances plant growth via phytohormone synthesis, nutrient solubilization, and antimicrobial activity against pathogens. Additionally, it contributes to bioremediation by degrading organic pollutants and produces industrially relevant enzymes. Its resilience to environmental stress underscores its potential for applications in sustainable agriculture, bioprocessing, and environmental remediation. View Species Chaetomium cupreum Chaetomium cupreum is a filamentous ascomycete fungus known for its biocontrol and biodegradation capabilities. It suppresses plant pathogens like Fusarium through antifungal metabolites and contributes to organic matter recycling via lignocellulose degradation. Its production of hydrolytic enzymes highlights its potential in sustainable agriculture and industrial biotechnology. View Species Fusarium proliferatum Non-pathogenic strains of Fusarium proliferatum offer promising potential in agriculture and biotechnology. These strains contribute to nutrient cycling by decomposing organic matter, enhancing soil health and fertility. Additionally, they are explored for their ability to produce industrially valuable enzymes and secondary metabolites that can be harnessed for biotransformation processes. Their metabolic diversity makes non-pathogenic F. proliferatum strains valuable for sustainable practices in agriculture and innovative applications in biotechnology. View Species Lactobacillus plantarum Lactobacillus plantarum is a facultative heterofermentative bacterium with diverse applications in health, agriculture, food technology, and biotechnology. Known for its probiotic properties, it enhances gut health by modulating the microbiome, strengthening the intestinal barrier, and producing antimicrobial compounds that inhibit pathogens. In food systems, it drives fermentation processes, producing lactic acid and bioactive metabolites that preserve food and enhance nutritional value, including B vitamins and antioxidants. In agriculture, L. plantarum offers significant benefits by controlling bacterial plant diseases, enhancing seed germination and seedling growth, improving root development, and inducing plant defense mechanisms. It supports plant growth by improving nutrient availability, enriching soil microbiota, and suppressing phytopathogens through the production of organic acids and antimicrobial peptides. Its genetic adaptability and metabolic versatility also make it valuable for enzyme production, metabolic engineering, and bioremediation, highlighting its role in sustainable health, agriculture, and bioprocessing applications. View Species Pediococcus pentosaceus Pediococcus pentosaceus is a Gram-positive lactic acid bacterium widely recognized for its dual role as a probiotic and as a biofungicide in agriculture. It produces lactic acid and a suite of antimicrobial peptides known as pediocins, which inhibit a broad spectrum of plant pathogens. Beyond pathogen suppression, it promotes plant growth through nutrient solubilization and induction of systemic resistance. View Species Pseudomonas spp. Pseudomonas spp. are versatile Gram-negative bacteria widely recognized for their role in biological control and plant health management. These bacteria produce antimicrobial compounds, enzymes, and secondary metabolites that effectively suppress plant pathogens, including fungi and bacteria, reducing disease incidence in crops. In agriculture, Pseudomonas spp. serve as eco-friendly alternatives to chemical pesticides, supporting sustainable farming practices. They also enhance plant stress tolerance by improving nutrient availability, promoting root growth, and inducing systemic resistance in plants. Their multifaceted benefits make Pseudomonas spp. essential for integrated pest management and environmentally responsible agriculture. View Species Trichoderma harzianum Trichoderma harzianum is a beneficial fungus widely used in agriculture for its biocontrol properties and plant growth-promoting effects. It manages fungal pathogens and soil-dwelling nematodes by producing antifungal metabolites and parasitizing harmful fungi, protecting crops from diseases. In addition to disease management, T. harzianum enhances seed germination, promotes robust plant growth, and strengthens plant defense mechanisms. Its ability to improve soil health and plant resilience makes it a vital tool in sustainable agriculture and integrated pest management strategies. View Species Trichoderma spp. Trichoderma spp. are widely recognized for their biocontrol capabilities in managing plant pathogens and soil-dwelling nematodes. These fungi displace causative agents by competing for resources and space, effectively reducing colonization opportunities for harmful fungi. Additionally, Trichoderma spp. produce enzymes and antimicrobial compounds that suppress the growth of plant pathogenic fungi, making them essential for sustainable agriculture and integrated pest management. View Species Trichoderma viride Trichoderma viride is a beneficial fungus widely used in agriculture for its ability to manage fungal pathogens and soil-dwelling nematodes. It enhances the stress tolerance of plant hosts and provides protection against fungal diseases by producing antifungal compounds and promoting plant defense mechanisms. Its role in improving plant resilience and controlling soil-borne pathogens makes it a key tool in sustainable agriculture and integrated pest management practices. View Species 1 1 ... 1 ... 1 Resources Read all

  • Post Harvest Treatment- Lactic Acid Bacteria | Manufacturer & Exporter | Indogulf BioAg

    Post Harvest Treatment - Lactic Cultures is a bio-preservation technique with the use of Lactic Acid Bacteria (LAB). < Microbial Species Post Harvest Treatment Post Harvest Treatments involve biological or chemical methods applied to harvested crops to prevent spoilage, extend shelf life, and maintain quality during storage and transportation. Product Enquiry What Why How FAQ What it is Post-harvest treatments refer to the various techniques and practices employed to preserve the quality, freshness, and shelf life of agricultural produce after harvesting. These treatments aim to minimize post-harvest losses, prevent spoilage, and maintain the nutritional value of fruits, vegetables, grains, and other perishable commodities during storage, transportation, and marketing. Why is it important Extended Shelf Life : Post-harvest treatments help prolong the shelf life of agricultural produce, allowing for longer storage periods and reducing the risk of spoilage and waste. Quality Preservation : Treatments such as washing, waxing, and packaging help maintain the appearance, texture, and flavor of fruits and vegetables, enhancing consumer appeal and marketability. Reduced Economic Losses : By minimizing post-harvest losses due to spoilage, rot, or physical damage, post-harvest treatments contribute to improved profitability and economic sustainability for growers, distributors, and retailers. How it works Types of Post-Harvest Treatments Cleaning and Sanitation : Washing and sanitizing fruits, vegetables, and packaging materials remove dirt, debris, and microbial contaminants, reducing the risk of decay and microbial spoilage. Waxing and Coating : Applying edible coatings or waxes to produce forms a protective barrier that reduces moisture loss, inhibits microbial growth, and enhances the appearance and shelf life of fruits and vegetables. Temperature Management : Cooling and refrigeration slow down physiological processes such as respiration and ripening, preserving the freshness and quality of perishable commodities during storage and transportation. Modified Atmosphere Packaging (MAP) : Packaging produce in controlled atmospheres with reduced oxygen and elevated carbon dioxide levels slows down ripening, inhibits microbial growth, and extends shelf life. Chemical Treatments : Application of fungicides, insecticides, or antimicrobial agents helps control post-harvest diseases, pests, and microbial spoilage, ensuring product quality and safety. Integrated Post-Harvest Management Effective post-harvest management involves the integration of multiple treatments and practices tailored to specific crops, storage conditions, and market requirements. By adopting a holistic approach to post-harvest handling, growers and stakeholders can maximize product quality, minimize losses, and meet consumer demand for fresh, safe, and nutritious food. FAQ Content coming soon! Post Harvest Treatment Our Products Explore our range of premium Post Harvest Treatment options tailored to meet your agricultural needs, extending shelf life and preserving quality from harvest to market. Lactic Cultures Lactic Cultures use Lactic Acid Bacteria (LAB) to preserve freshness post-harvest by producing antimicrobial compounds that inhibit harmful microorganisms. View Species 1 1 ... 1 ... 1 Resources Read all

  • Plant Growth Promoters - Manufacturer & Exporter - Indogulf BioAg

    Plant Growth Promoters to promote plant roots development and improve growth. It also has the ability to produce enzymes to suppress plant pathogens and eventually kill them. < Microbial Species Plant Growth Promoters Plant Growth Promoters products, often containing beneficial microorganisms or natural compounds, promote overall plant health and development, enhancing growth rates and crop yields. Product Enquiry What Why How FAQ What it is Plant growth promoters, also known as phytohormones, are naturally occurring chemical substances that regulate various physiological processes in plants. These hormones act as chemical messengers, influencing growth, development, and responses to environmental stimuli. The main classes of plant hormones include auxins, cytokinins, gibberellins, ethylene, and abscisic acid, each playing specific roles in plant growth and adaptation. Why is it important Regulation of Growth : Plant hormones control fundamental processes such as cell elongation, cell division, and differentiation, which are essential for overall plant growth and development. Developmental Processes : Hormones like auxins and cytokinins regulate processes such as seed germination, root and shoot growth, flowering, and fruit development. Environmental Responses : Hormones such as ethylene and abscisic acid help plants respond to environmental stresses such as drought, flooding, temperature extremes, and pathogen attacks. Crop Yield and Quality : Proper hormone regulation can enhance crop yield by optimizing growth patterns, improving nutrient uptake, and ensuring efficient use of resources. How it works Auxins : Stimulate cell elongation, regulate apical dominance, promote phototropism and gravitropism. Production : Synthesized in shoot tips, young leaves, and developing seeds. Cytokinins : Promote cell division, delay aging (senescence), enhance nutrient mobilization, and counteract apical dominance. Production : Produced in actively growing tissues like roots, embryos, and fruits. Gibberellins : Stimulate stem elongation, promote seed germination, regulate flowering and fruit development. Production : Synthesized in roots, young leaves, and seeds. Ethylene : Regulate fruit ripening, leaf and flower senescence, and response to stress (e.g., flooding, injury). Production : Produced in response to stress and during fruit ripening. Abscisic Acid (ABA) : Control seed dormancy and germination, regulate stomatal closure in response to drought, and promote stress tolerance. Production : Synthesized in response to stress conditions and present in seeds and mature leaves. Interaction and Regulation : Plant hormones often interact synergistically or antagonistically to coordinate growth and development processes. Environmental factors influence hormone production and their effects, allowing plants to adapt and thrive in varying conditions. Understanding the roles and mechanisms of plant growth hormones is crucial for optimizing agricultural practices, improving crop productivity, and enhancing plant resilience to environmental challenges. FAQ Content coming soon! Plant Growth Promoters Our Products Explore our range of premium Plant Growth Promoters tailored to meet your agricultural needs, stimulating robust growth and maximizing yield potential. Bacillus amyloliquefaciens Bacillus amyloliquefaciens, produces plant growth hormones, suppresses pathogens with enzymes, acts as biofertilizer and biopesticide, improves soil fertility, safe for non-target species and humans. View Species Bacillus azotoformans Used as seed inoculant, enhances germination and root development, improves water and nutrient transport, environmentally safe. View Species Bacillus circulans Bacillus circulans produces indoleacetic acid, solubilizes phosphorus improving absorption, enhances plant growth and yield, safe and eco-friendly. View Species Bacillus pumilus Bacillus pumilus produces antibiotics against pathogens, enhances nutrient uptake and drought tolerance, effective biocontrol agent, environmentally safe. View Species Pseudomonas fluorescens Pseudomonas fluorescens suppresses soil-borne pathogens, produces antibiotics and siderophores, enhances nutrient availability, improves root growth and disease resistance. View Species Pseudomonas putida Pseudomonas putida produces growth-promoting substances, degrades organic pollutants in soil, improves soil structure and nutrient availability, enhances plant stress tolerance. View Species Rhodococcus terrae Rhodococcus terrae enhances soil structure and nutrient availability, degrades organic pollutants, promotes plant growth with growth-promoting substances, improves root development and stress tolerance. View Species Vesicular arbuscular mycorrhiza Vesicular Arbuscular Mycorrhiza (VAM) is a beneficial fungus that enhances plant root absorption, improves soil structure, and increases nutrient uptake. It forms a symbiotic relationship with roots, boosting plant growth, drought resistance, and soil fertility for healthier, more resilient crops. View Species Williopsis saturnus Williopsis saturnus enhances nutrient uptake, improves soil fertility, suppresses soil-borne pathogens, promotes root development and yield, contributes to environmental sustainability, effective in agriculture. View Species 1 1 ... 1 ... 1 Resources Read all

  • Nitrogen Fixing Bacteria Manufacturer & Exporter - Indogulf BioAg

    Indogulf BioAg is a leading manufacturer and exporter of nitrogen-fixing bacteria, revolutionizing the way crops are grown worldwide. We are a Manufacturer & Global Exporter of Acetobacter, Azospirillium, Azotobacter, Rhizobium, Nitromax, and other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Nitrogen Fixing Bacteria Nitrogen-fixing bacteria are naturally occurring microorganisms essential to the nitrogen cycle. They possess the unique capability to convert atmospheric nitrogen (N₂)—which is inert and unavailable directly to plants—into bioavailable nitrogen compounds such as ammonia (NH₃) or ammonium ions (NH₄⁺). This crucial biological process, termed biological nitrogen fixation, significantly enhances soil fertility, reduces dependency on synthetic fertilizers, and supports sustainable agriculture and environmental conservation. At IndoGulf BioAg, we specialize in cultivating high-quality, non-GMO, robust strains of nitrogen-fixing bacteria tailored for diverse agricultural applications. Leveraging advanced biotechnological methods and rigorous quality control, our products consistently deliver superior performance, reliability, and sustainability. Product Enquiry Distinction Importance and Versatility Nitrogen Fixation Mechanism Agronomic Benefits Application & Dosage FAQ FAQ What soil conditions favor nitrogen-fixing bacteria? Optimal pH 6.0–8.0, moderate moisture (60–70% field capacity), and organic matter >1.5%. How quickly will I see results after application? Initial benefits (root vigor) appear within 3–4 weeks; significant yield improvements by crop maturity. Are there compatibility issues with chemical inputs? Avoid simultaneous application with broad-spectrum fungicides. Integrate with herbicides and insecticides per label guidelines. Why choose biological fixation over synthetic N? Enhances soil health, reduces greenhouse gas emissions, and improves long-term sustainability of farming systems. Importance and Versatility Soil Fertility and Nutrient Cycling Nitrogen-fixing bacteria play a critical role in replenishing soil nitrogen levels, forming a vital component of the nitrogen cycle . These bacteria convert atmospheric nitrogen (N₂)—which plants cannot utilize directly—into biologically accessible forms such as ammonia (NH₃) and ammonium ions (NH₄⁺). This process, known as biological nitrogen fixation, significantly enhances soil fertility. By naturally enriching soils with essential nitrogen, these bacteria support plant growth, increase crop yields, and promote robust root development. Additionally, nitrogen-fixing bacteria improve nutrient cycling efficiency by decomposing organic matter and recycling nitrogen compounds within the soil ecosystem, maintaining nutrient availability and reducing the need for external nutrient inputs. Sustainable Agriculture The use of nitrogen-fixing bacteria represents a sustainable and environmentally friendly alternative to synthetic nitrogen fertilizers. By integrating these microorganisms into agricultural systems—such as through inoculants or by planting nitrogen-fixing legumes—farmers can substantially decrease their dependence on chemical fertilizers. This approach not only lowers production costs but also enhances agricultural sustainability by promoting natural soil health, reducing the environmental footprint, and supporting resilient agricultural practices that conserve resources for future generations. Incorporating nitrogen-fixing bacteria into crop management strategies aligns with organic farming principles and contributes to long-term productivity without sacrificing soil health or environmental quality. Environmental Benefits Reduction in Greenhouse Gas Emissions : Excessive use of synthetic nitrogen fertilizers leads to significant emissions of nitrous oxide (N₂O), a potent greenhouse gas with a global warming potential far greater than carbon dioxide. By reducing reliance on synthetic fertilizers through the use of nitrogen-fixing bacteria, farmers can significantly mitigate these harmful emissions, contributing to efforts aimed at combating climate change and reducing the agricultural sector's carbon footprint. Prevention of Soil Degradation: Natural nitrogen enrichment by nitrogen-fixing bacteria enhances soil organic matter, improving soil structure, aeration, and moisture retention capacity. This reduces soil erosion, compaction, and degradation often associated with heavy chemical fertilizer use. Furthermore, minimizing chemical contamination promotes healthier soil ecosystems and biodiversity, fostering a balanced microbial environment essential for sustainable agriculture. Water Pollution Mitigation: Nitrogen runoff from excessive synthetic fertilizer application frequently contaminates groundwater and surface water, leading to eutrophication, algal blooms, and ecosystem damage. By incorporating nitrogen-fixing bacteria to naturally supply plants with nitrogen, agricultural practices can significantly decrease nitrogen runoff. This helps preserve water quality, protects aquatic ecosystems, and ensures safer drinking water sources, aligning agricultural productivity with environmental conservation. How it works Mechanism of Biological Nitrogen Fixation Biological nitrogen fixation is an essential microbial-mediated biochemical process whereby inert atmospheric nitrogen gas (N₂) is transformed into bioavailable ammonia (NH₃). This intricate process is pivotal for maintaining ecological balance and agricultural productivity, comprising the following sequential steps: Atmospheric Nitrogen Capture: Specialized nitrogen-fixing microorganisms, including symbiotic bacteria associated with legume roots (e.g., Rhizobium species) and free-living soil bacteria (e.g., Azotobacter ), effectively capture atmospheric nitrogen gas. Catalytic Role of Nitrogenase Enzyme: The enzyme nitrogenase orchestrates the energy-dependent conversion of atmospheric nitrogen into ammonia. This catalytic reduction is an ATP-intensive reaction requiring strictly anaerobic conditions to ensure optimal enzyme functionality and prevent oxidative damage to nitrogenase components. Integration and Utilization of Ammonia: The ammonia produced through nitrogen fixation serves as a critical nitrogen source. Within symbiotic interactions, host plants directly assimilate ammonia to synthesize essential biomolecules, such as proteins and nucleic acids. Conversely, in free-living bacterial systems, ammonia is released into the soil, enhancing nutrient availability and benefiting surrounding plant and microbial communities, thereby improving overall soil health and fertility. Distinction Nitrogen-fixing bacteria are broadly categorized based on their interactions with plants: 1. Symbiotic Nitrogen-Fixing Bacteria These microorganisms form beneficial, mutualistic associations with certain plants, particularly legumes. Rhizobium species : The most prominent symbiotic nitrogen fixers, Rhizobium bacteria colonize legume roots (beans, peas, lentils, clover), forming specialized structures called root nodules. Within these nodules, nitrogenase enzymes actively convert atmospheric nitrogen into ammonia, providing the host plant with essential nitrogen nutrients. In exchange, plants supply the bacteria with carbon-based energy sources derived from photosynthesis. This mutualistic interaction is foundational in organic farming systems, significantly reducing the need for synthetic nitrogen fertilizers. Rhizobia: Soybean roots contain (a) nitrogen-fixing nodules. Cells within the nodules are infected with Bradyrhyzobium japonicum, a rhizobia or “root-loving” bacterium. The bacteria are encased in (b) vesicles inside the cell, as can be seen in this transmission electron micrograph. Rhizobia: Soybean roots contain (a) nitrogen-fixing nodules. Cells within the nodules are infected with Bradyrhyzobium japonicum , a rhizobia or “root-loving” bacterium. The bacteria are encased in (b) vesicles inside the cell, as can be seen in this transmission electron micrograph. ( source ) 2. Free-Living Nitrogen-Fixing Bacteria Free-living nitrogen fixers operate independently within the soil ecosystem, requiring no direct plant host to carry out nitrogen fixation. Azotobacter species : These aerobic bacteria are prevalent in nitrogen-rich, organic soils, actively enhancing nitrogen availability by converting atmospheric nitrogen into ammonia directly within the soil. Cyanobacteria (blue-green algae): Widely distributed in various environments, cyanobacteria contribute significantly to nitrogen fixation, especially in aquatic ecosystems and rice paddies. They also improve soil organic matter and fertility, supporting sustainable crop growth. Cyanobacteria under microscopic view (Elif Bayraktar/Shutterstock.com) Mechanism of Action Biological Nitrogen Fixation Free-living diazotrophs convert atmospheric N₂ into plant-available NH₄⁺ in the rhizosphere, reducing the need for up to 50% of conventional nitrogen applications. Root Colonization & Growth Promotion Produce indole-3-acetic acid (IAA) and siderophores to stimulate root proliferation and enhance micronutrient uptake. Agronomic Benefits Benefit Impact Enhanced Nitrogen Availability +20–30 kg N/ha fixed per season, improving yields Improved Root Development 15–25% increase in root biomass Stress Tolerance Greater resilience to drought and salinity stress Lower Input Costs Reduce synthetic N fertilizer use by up to 40% Application & Dosage Benefit Impact Enhanced Nitrogen Availability +20–30 kg N/ha fixed per season, improving yields Improved Root Development 15–25% increase in root biomass Stress Tolerance Greater resilience to drought and salinity stress Lower Input Costs Reduce synthetic N fertilizer use by up to 40% Nitrogen Fixing Bacteria Our Products Explore our proprietary nitrogen-fixing bacteria strains, tailored to enrich your soil, enhance nitrogen availability, and promote robust, healthy crop development Acetobacter xylinum Acetobacter xylinum is a beneficial bacterium known for producing bacterial cellulose, a biopolymer with valuable applications in agriculture. Its presence in soil enhances plant growth and resilience by improving soil structure, increasing moisture retention, and enhancing nutrient availability. These benefits are especially valuable in arid and challenging environments. View Species Azospirillum brasilense Azospirillum brasilense, a plant growth-promoting bacterium, significantly enhances root development and nutrient uptake in crops such as wheat, maize, and rice. This leads to improved plant growth, higher nutrient efficiency, and increased yields, making it a valuable tool for sustainable agriculture." Supporting References: Azospirillum has been shown to improve root development and nutrient uptake, enhancing crop yields under various conditions (Okon & Itzigsohn, 1995). Inoculation with Azospirillum brasilense increases mineral uptake and biomass in crops like maize and sorghum (Lin et al., 1983). Studies have documented up to 29% increased grain production when maize was inoculated with Azospirillum brasilense, particularly when combined with nutrient applications (Ferreira et al., 2013). Enhanced growth and nutrient efficiency in crops such as lettuce and maize have also been reported, supporting its role in sustainable agriculture (da Silva Oliveira et al., 2023) (Marques et al., 2020). View Species Azospirillum lipoferum In agriculture Azospirillum lipoferum is used to promote root development and nitrogen fixation in various crops, leading to enhanced growth and higher agricultural productivity. View Species Azospirillum spp. Azospirillum spp. a nitrogen fixing bacteria in agriculture to enhance plant growth and commonly applied to roots of cereals and grasses to improve yield. View Species Azotobacter vinelandii Azotobacter vinelandii is a free-living diazotroph of notable agronomic value, contributing to sustainable crop production by biologically fixing atmospheric nitrogen into plant-available forms. Its ability to enhance soil nitrogen content is particularly beneficial for non-leguminous cropping systems, reducing dependence on synthetic nitrogen inputs and improving long-term soil fertility. View Species Beijerinckia indica As a versatile free-living diazotroph, Beijerinckia indica can sustainably supplement up to 40% of nitrogen fertilizer requirements, improve soil health, and enhance crop resilience across diverse agroecosystems. View Species Bradyrhizobium elkanii Bradyrhizobium elkanii a bacterium that forms symbiotic relationships with legume roots, significantly improving nitrogen availability in the soil, which is essential for leguminous crop production. View Species Bradyrhizobium japonicum Badyrhizobium japonicum is a nitrogen-fixing bacterium that plays a crucial role in soybean cultivation. By forming symbiotic nodules on soybean roots, it converts atmospheric nitrogen (N₂) into ammonia (NH₃), a form that plants can readily use for growth. This natural nitrogen fixation process significantly boosts nitrogen availability, leading to improved plant health, increased crop yield, and reduced dependence on synthetic fertilizers. Rhizobium japonicum is vital for promoting sustainable agricultural practices while enhancing soil fertility in legume-based farming systems. View Species Gluconacetobacter diazotrophicus Gluconacetobacter diazotrophicus is a beneficial bacterium used in agriculture for its association with sugarcane and other crops, where it fixes nitrogen and enhances plant growth and productivity. View Species Herbaspirillum frisingense Herbaspirillum frisingense is used in agriculture to promote plant growth by fixing nitrogen and producing plant hormones, enhancing crop yields and soil health. View Species Paenibacillus azotofixans Paenibacillus azotofixans: Utilized in agricultural practices to promote plant growth by fixing atmospheric nitrogen, thus improving soil fertility, especially in various crop fields. View Species Rhizobium leguminosarum Rhizobium leguminosarum is a species of nitrogen-fixing bacteria that forms symbiotic relationships with leguminous plants, particularly peas, beans, and clover. These bacteria colonize the plant's root system and create nodules, where they convert atmospheric nitrogen (N₂) into ammonia (NH₃) through the enzyme nitrogenase. This process provides the plant with essential nitrogen, facilitating its growth while simultaneously improving soil fertility. Rhizobium leguminosarum plays a key role in sustainable agriculture by reducing the need for synthetic nitrogen fertilizers and enhancing crop yields naturally. View Species 1 1 ... 1 ... 1 Resources Read all

  • Bradyrhizobium Japonicum - Manufacturer & Exporter | Indogulf BioAg

    Bradyrhizobium Japonicum also known as Rhizobium japonicum. It is a biological fertilizer that contains beneficial bacteria. Manufacturer & Supplier company in USA. Indogulf BioAg < Microbial Species Bradyrhizobium japonicum Badyrhizobium japonicum is a nitrogen-fixing bacterium that plays a crucial role in soybean cultivation. By forming symbiotic nodules on soybean roots, it converts atmospheric nitrogen (N₂) into ammonia (NH₃), a form that plants can readily use for growth. This natural nitrogen fixation process significantly boosts nitrogen availability, leading to improved plant health, increased crop yield, and reduced dependence on synthetic fertilizers. Rhizobium japonicum is vital for promoting sustainable agricultural practices while enhancing soil fertility in legume-based farming systems. Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Buy Now Benefits Nitrogen Fixation Rhizobium japonicum forms a symbiotic relationship with leguminous plants, particularly soybeans, to fix atmospheric nitrogen into ammonium (NH₄⁺). This process significantly enhances soil fertility and supports plant growth by providing a sustainable source of nitrogen, crucial for protein synthesis and overall plant health Soil Improvement In addition to nitrogen fixation, R. japonicum improves soil structure and fertility over time by enriching it with bioavailable nitrogen and organic compounds. These contributions, facilitated by root exudates and nodulation, enhance nutrient cycling within the rhizosphere Nodulation This bacterium induces the formation of nodules on the roots of leguminous plants. Within these nodules, nitrogenase enzymes convert atmospheric nitrogen into usable forms, ensuring an optimal environment for nitrogen fixation Increased Crop Yield By supplying fixed nitrogen directly to the host plant, R. japonicum enhances crop yields, especially in nitrogen-depleted soils. The symbiotic relationship helps crops thrive in nutrient-poor environments, significantly reducing the need for synthetic fertilizers Dosage & Application Additional Info Dosage & Application Additional Info Related Products Beauveria bassiana Hirsutella thompsonii Isaria fumosorosea Lecanicillium lecanii Metarhizium anisopliae Nomuraea rileyi Paracoccus denitrificans Bifidobacterium animalis Bifidobacterium bifidum Bifidobacterium breve Bifidobacterium infantis Bifidobacterium longum More Products Resources Read all

  • Potash Manufacturer & Exporter | Indogulf BioAg | USA

    Indogulf BioAg is a Manufacturer & Global Exporter of Potash solubilising, Bacillus Mucilaginous, Frateuria Aurantia & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Potash Solubilizing Bacteria Potash Solubilizing Bacteria convert insoluble potassium compounds in the soil into forms that plants can absorb, improving potassium availability and supporting plant metabolic processes. Product Enquiry What Why How FAQ What it is Potash solubilizing bacteria (PSB) are a group of beneficial microorganisms that enhance the availability of potassium in the soil. Potassium is a vital nutrient for plants, essential for various physiological processes such as enzyme activation, photosynthesis, protein synthesis, and water regulation. However, a significant portion of soil potassium is present in insoluble forms that plants cannot readily absorb. PSB convert these insoluble forms into soluble potassium that plants can utilize. Why is it important Potassium is crucial for plant health and productivity , yet it often exists in forms that are not easily accessible to plants. The importance of potash solubilizing bacteria includes: Enhanced Nutrient Availability: PSB increase the availability of potassium, promoting healthier and more vigorous plant growth. Improved Soil Fertility: By converting insoluble potassium compounds into forms accessible to plants, PSB contribute to overall soil fertility and plant nutrition. Sustainable Agriculture: Utilizing PSB can reduce the reliance on chemical potassium fertilizers, leading to more environmentally friendly and sustainable farming practices. How it works Potash solubilizing bacteria employ several mechanisms to convert insoluble potassium into soluble forms: Acid Production: PSB produce organic acids such as citric acid, oxalic acid, and tartaric acid. These acids help in dissolving potassium-bearing minerals (such as feldspar and mica) by lowering the pH and releasing soluble potassium ions that plants can absorb. Enzymatic Activity: Some PSB produce enzymes that break down complex potassium compounds in the soil, converting them into simpler, soluble forms that are available for plant uptake. Chelation: PSB can produce chelating agents that bind to potassium ions, effectively solubilizing them and making them available to plants. By employing these mechanisms, potash solubilizing bacteria play a crucial role in enhancing potassium availability in the soil, supporting plant health, and contributing to sustainable agricultural practices. FAQ Content coming soon! Potash Solubilizing Bacteria Our Products Explore our range of premium Potash Solubilizing Bacteria strains tailored to meet your agricultural needs, facilitating the availability of potassium for vital plant functions. Bacillus mucilaginosus Bacillus mucilaginosus is a naturally occurring potassium solubilizing bacterium, that naturally alleviates the K deficiency of in plants by transforming insoluble mineral potassium in the soil into bioavailable forms, ensuring optimal environment for plant root uptake. Its application is particularly valuable in soils with limited potassium availability, improving plant health and soil biodiversity. View Species Frateuria aurantia Frateuria aurantia is a beneficial bacterium solubilizing potassium present in the soil, converting it into a form that plants can utilize. This product is recommended for soils with potassium deficiency. View Species 1 1 ... 1 ... 1 Resources Read all

  • Rhizophagus Intraradices | Microbial Species | Indogulf BioAg

    Agricultural Probiotics, Organic Fertilizers, Organic Fertilizers manufacturer < Microbial Species Product Name Description Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Buy Now Benefits Dosage & Application Additional Info Scientific References Mode of Action FAQ Dosage & Application Sample text Additional Info Sample text FAQ Scientific References Mode of Action Related Products More Products Resources Read all

  • Neem Extracts with Azadirachta Indica Tree - Indogulf BioAg

    Neem Extracts are extracts from the collected leaves and seeds of an evergreen tree Azadirachta indica. Manufacturer & Exporter in USA.. For more info visit our website! < Microbial Species Antifeedant Antifeedants are natural or synthetic substances that deter pests from feeding on plants by making the plants unpalatable or toxic to them, thus effectively protecting crops from damage. Product Enquiry What Why How FAQ What it is Antifeedants are natural or synthetic compounds that deter feeding behavior in herbivorous insects, pests, or animals. These compounds act as feeding inhibitors by altering the taste, smell, or texture of plants or food sources, thereby discouraging pests from consuming them. Antifeedants offer a non-toxic and environmentally friendly approach to pest management, reducing the need for chemical pesticides and promoting sustainable agricultural practices. Why is it important Reduced Crop Damage : Anti-feedants deter pests from feeding on crops, reducing damage caused by herbivorous insects and minimizing yield losses. Environmentally Safe : Anti-feedants are typically non-toxic to humans, beneficial insects, and non-target organisms, making them suitable for use in integrated pest management (IPM) programs. Resistance Management : Anti-feedants employ multiple modes of action against pests, reducing the likelihood of resistance development and offering a sustainable long-term solution for pest control. How it works Antifeedants control pests through various mechanisms: Chemical Deterrents : Some antifeedants contain bitter-tasting compounds, toxic substances, or repellent chemicals that deter pests from feeding on treated plants. Phytochemicals : Plants produce secondary metabolites such as alkaloids, terpenoids, or phenolics that act as natural antifeedants, protecting them from herbivory. Mechanical Barriers : Antifeedants can create physical barriers or modify plant surfaces to make them unpalatable or difficult for pests to feed on. Behavioral Disruption : Antifeedants can disrupt feeding behavior or feeding patterns in pests, preventing them from locating or recognizing suitable food sources. Integrated Pest Management Strategies Antifeedants are often integrated into holistic pest management strategies, which may include cultural practices such as crop rotation, intercropping, and sanitation, as well as biological control methods such as the release of natural enemies or the use of pheromones. This integrated approach maximizes the efficacy of antifeedants while minimizing environmental risks and promoting sustainable pest management practices. FAQ Content coming soon! Antifeedant Our Products Explore our range of premium Antifeedant products tailored to meet your agricultural needs, deterring pests and minimizing crop damage by reducing feeding activity. Neem Extracts from Azadirachta Indica Tree Neem extracts from Azadirachta indica contain Azadirachtin, toxic to pests, acting as antifeedant, repellent, and sterilizer. Organic gardeners use it for pest control. View Species 1 1 ... 1 ... 1 Resources Read all

  • Thiobacillus Ferrooxidans | Microbial Species | Indogulf BioAg

    Agricultural Probiotics, Organic Fertilizers, Rice Protect Kit, Organic Fertilizers manufacturer Mumbai, rice bio-fertilizer. < Microbial Species Acidithiobacillus ferrooxidans Acidithiobacillus Ferrooxidans acts as a biofertilizer, enhancing nutrient availability by solubilizing soil iron, crucial for plants in iron-deficient soils. Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Buy Now Benefits Increases Crop Yields and Enhances Produce Quality Leads to better marketability and profitability for farmers by boosting crop yields and improving produce quality. Improves Plant Health Enhances resistance against drought and diseases, promoting healthier and more resilient plants. Enhances Nutrient Availability Solubilizes iron in the soil, making it more accessible for plants to uptake essential nutrients. Promotes Environmental Sustainability Reduces dependence on chemical fertilizers and pesticides, contributing to sustainable agriculture. Dosage & Application Additional Info Dosage & Application Additional Info Related Products Beauveria bassiana Hirsutella thompsonii Isaria fumosorosea Lecanicillium lecanii More Products Resources Read all

bottom of page