top of page

366 results found with an empty search

  • Potash Manufacturer & Exporter | Indogulf BioAg | USA

    Indogulf BioAg is a Manufacturer & Global Exporter of Potash solubilising, Bacillus Mucilaginous, Frateuria Aurantia & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Potash Solubilizing Bacteria Potash Solubilizing Bacteria convert insoluble potassium compounds in the soil into forms that plants can absorb, improving potassium availability and supporting plant metabolic processes. Product Enquiry What Why How FAQ What it is Potash solubilizing bacteria (PSB) are a group of beneficial microorganisms that enhance the availability of potassium in the soil. Potassium is a vital nutrient for plants, essential for various physiological processes such as enzyme activation, photosynthesis, protein synthesis, and water regulation. However, a significant portion of soil potassium is present in insoluble forms that plants cannot readily absorb. PSB convert these insoluble forms into soluble potassium that plants can utilize. Why is it important Potassium is crucial for plant health and productivity , yet it often exists in forms that are not easily accessible to plants. The importance of potash solubilizing bacteria includes: Enhanced Nutrient Availability: PSB increase the availability of potassium, promoting healthier and more vigorous plant growth. Improved Soil Fertility: By converting insoluble potassium compounds into forms accessible to plants, PSB contribute to overall soil fertility and plant nutrition. Sustainable Agriculture: Utilizing PSB can reduce the reliance on chemical potassium fertilizers, leading to more environmentally friendly and sustainable farming practices. How it works Potash solubilizing bacteria employ several mechanisms to convert insoluble potassium into soluble forms: Acid Production: PSB produce organic acids such as citric acid, oxalic acid, and tartaric acid. These acids help in dissolving potassium-bearing minerals (such as feldspar and mica) by lowering the pH and releasing soluble potassium ions that plants can absorb. Enzymatic Activity: Some PSB produce enzymes that break down complex potassium compounds in the soil, converting them into simpler, soluble forms that are available for plant uptake. Chelation: PSB can produce chelating agents that bind to potassium ions, effectively solubilizing them and making them available to plants. By employing these mechanisms, potash solubilizing bacteria play a crucial role in enhancing potassium availability in the soil, supporting plant health, and contributing to sustainable agricultural practices. FAQ Content coming soon! Potash Solubilizing Bacteria Our Products Explore our range of premium Potash Solubilizing Bacteria strains tailored to meet your agricultural needs, facilitating the availability of potassium for vital plant functions. Bacillus mucilaginosus Bacillus mucilaginosus is a naturally occurring potassium solubilizing bacterium, that naturally alleviates the K deficiency of in plants by transforming insoluble mineral potassium in the soil into bioavailable forms, ensuring optimal environment for plant root uptake. Its application is particularly valuable in soils with limited potassium availability, improving plant health and soil biodiversity. View Species Frateuria aurantia Frateuria aurantia is a beneficial bacterium solubilizing potassium present in the soil, converting it into a form that plants can utilize. This product is recommended for soils with potassium deficiency. View Species 1 1 ... 1 ... 1 Resources Read all

  • Microbial Strains Manufacturer & Supplier Company in USA

    We are Microbial Strains manufacturer & supplier globally registered and certified in several countries including the United States and UK. Organically certified by Indocert. Microbial Species Explore Our Library of Beneficial Microbes Unlock the potential of your soil with our carefully selected microbial strains, engineered to enhance nutrient availability, promote plant growth, and suppress harmful pathogens, ensuring healthier crops and improved yields. Contact us Features of Our Species Directory Diverse Catalog Over 100 industrially important microbial strains, including nitrogen-fixers, phosphate solubilizers, biocontrol agents, probiotics, and more. Mechanistic Details In-depth explanation of how each microbe interacts with plants or the environment (enzyme production, hormone stimulation, pathogen antagonism, etc.). Application Guidance Recommendations for use-cases and industries – which crops, soil conditions, or contamination issues each strain is best suited for. Research & Compliance Key literature references and regulatory status (such as OMRI-listed for organic use) provided for each species, ensuring you trust its proven performance. Regular Updates Continuously updated with new strains and the latest scientific findings as our R&D expands the frontier of microbial technology. Segments We Focus On Nitrogen Fixing Bacteria Nitrogen-fixing bacteria are naturally occurring microorganisms essential to the nitrogen cycle. They possess the unique capability to convert atmospheric nitrogen (N₂)—which is inert and unavailable directly to plants—into bioavailable nitrogen compounds such as ammonia (NH₃) or ammonium ions (NH₄⁺). This crucial biological process, termed biological nitrogen fixation, significantly enhances soil fertility, reduces dependency on synthetic fertilizers, and supports sustainable agriculture and environmental conservation. At IndoGulf BioAg, we specialize in cultivating high-quality, non-GMO, robust strains of nitrogen-fixing bacteria tailored for diverse agricultural applications. Leveraging advanced biotechnological methods and rigorous quality control, our products consistently deliver superior performance, reliability, and sustainability. View Collection Phosphorous Solubilizing Bacteria Phosphorous Solubilizing Bacteria convert insoluble phosphates into soluble forms that plants can absorb, improving phosphorus availability and promoting stronger root development. View Collection Potash Solubilizing Bacteria Potash Solubilizing Bacteria convert insoluble potassium compounds in the soil into forms that plants can absorb, improving potassium availability and supporting plant metabolic processes. View Collection Sulphur Solubilizing Bacteria Sulphur Solubilizing Bacteria enhance the availability of sulfur in the soil by converting insoluble sulfur compounds into forms that plants can easily uptake, improving plant nutrition and growth. View Collection Silica Solubilizing Bacteria Silica Solubilizing Bacteria make silica available to various plants by converting insoluble forms into readily absorbable forms, which can significantly enhance plant strength, growth, and resistance to environmental stress. View Collection Manganese Solubilizing Bacteria Manganese Solubilizing Bacteria make manganese more available to plants by converting insoluble forms into absorbable forms, aiding in chlorophyll production and other vital functions. View Collection Iron Solubilizing Bacteria Iron Solubilizing Bacteria convert insoluble forms of iron into highly soluble forms that plants can easily absorb, thereby preventing iron deficiency and significantly promoting healthy plant development. View Collection Biocontrol Biocontrol is the use of beneficial natural organisms to control agricultural pests and diseases, such as root nematodes, powdery mildew, and whiteflies. By minimizing the reliance on chemical pesticides, biocontrol promotes sustainable farming practices, enhances soil health, and protects the environment. View Collection Biofungicides Biofungicides are effective biological agents that specifically control various fungal diseases in plants, significantly reducing the incidence of infections and promoting healthier, more resilient agricultural crops. View Collection Larvicides Larvicides are highly effective solutions for managing the larval stages of harmful pests in agriculture and public health. By targeting larvae directly, larvicides disrupt pest life cycles, reducing populations and minimizing damage to crops and the environment. These products offer a sustainable and precise alternative to broad-spectrum pesticides, especially when integrated with environmentally conscious farming practices. View Collection Bionematicides Bionematicides are innovative biological agents designed to control plant-parasitic nematodes (PPNs) in agricultural soils. These products work by targeting nematodes ( i.e root knot nematodes) directly or improving the resilience of crops against nematode attacks. By protecting plant roots, bionematicides help enhance crop health, boost yields, and promote sustainable farming practices. Unlike traditional chemical nematicides, bionematicides are derived from naturally occurring microorganisms—such as nematophagous fungi and beneficial bacteria—or bioactive compounds from plants and microbes. These agents offer an eco-friendly, residue-free alternative, making them a vital part of modern integrated pest management (IPM) systems. View Collection Antifeedant Antifeedants are natural or synthetic substances that deter pests from feeding on plants by making the plants unpalatable or toxic to them, thus effectively protecting crops from damage. View Collection Post Harvest Treatment Post Harvest Treatments involve biological or chemical methods applied to harvested crops to prevent spoilage, extend shelf life, and maintain quality during storage and transportation. View Collection Denitrification Denitrification is a complex microbial process that plays a central role in the nitrogen cycle, facilitating the transformation of nitrates (NO₃⁻) and nitrites (NO₂⁻) into gaseous forms such as nitrogen gas (N₂), nitric oxide (NO), and nitrous oxide (N₂O). This reduction process is carried out predominantly by facultative anaerobic bacteria under oxygen-limited (anoxic) conditions. The pathway involves multiple enzymatic steps mediated by specialized enzymes, each catalyzing a specific reduction reaction: Nitrate reductase (Nar or Nap): Reduces nitrate (NO₃⁻) to nitrite (NO₂⁻). Nitrite reductase (Nir): Converts nitrite to nitric oxide (NO). Nitric oxide reductase (Nor): Reduces NO to nitrous oxide (N₂O). Nitrous oxide reductase (Nos): Converts N₂O to dinitrogen gas (N₂), completing the process. View Collection Bio Compost Degrading Bio Compost Degrading microorganisms accelerate the decomposition of organic matter in compost, enhancing the production of nutrient-rich compost for use in soil improvement and plant growth. View Collection Plant Growth Promoters Plant Growth Promoters products, often containing beneficial microorganisms or natural compounds, promote overall plant health and development, enhancing growth rates and crop yields. View Collection Probiotics We provide diverse bacterial and yeast probiotic strains sourced from natural habitats. Available in individual forms or ready-to-fill blends, our probiotics range from 5 billion to 200 billion CFU/g, supporting gut health for humans and animals. View Collection Bioremediation Bioremediation is an eco-friendly process that uses microorganisms to break down or neutralise pollutants in soil, water, and air. By harnessing the natural metabolic processes of bacteria, fungi, and other microbes, bioremediation helps clean up contaminants such as oil spills, heavy metals, and industrial waste, making it an effective solution for environmental restoration. View Collection Arbuscular Mycorrhizal Fungi Arbuscular mycorrhizal fungi (AMF) establish mutualistic associations with the roots of approximately 80% of terrestrial plant species. Through an extensive extraradical hyphal network, AMF significantly expand the absorptive surface area of root systems, facilitating enhanced uptake of essential nutrients—particularly phosphorus, nitrogen, and micronutrients—beyond the depletion zones of roots. In addition to nutrient acquisition, AMF play a key role in improving plant tolerance to abiotic stresses such as drought, salinity, and heavy metal toxicity by modulating physiological responses and maintaining water balance. At the ecosystem level, AMF contribute to soil aggregation and long-term fertility by secreting glomalin and stabilizing soil particles. This symbiosis forms a foundational component of belowground biodiversity and function, offering a biologically-driven pathway to improved plant performance and soil resilience in both natural and managed systems. View Collection Balance Your Soil with Beneficial Microbes Unlock the potential of your soil with our carefully selected microbial strains, engineered to enhance nutrient availability, promote plant growth, and suppress harmful pathogens. Our proprietary formulations ensure healthier crops and improved yields across diverse agricultural settings. Soil Nutrient Solubilizers Nitrogen Cyclers Plant Growth Promoters & Biocontrol Agents Fungal Activators & Biocontrol FAQ FAQ What are microbial strains used for? Microbial strains are applied as biofertilizers, biopesticides, and soil conditioners. They enhance nutrient cycling, suppress pathogens, and stimulate plant growth by producing hormones and solubilizing minerals. How do microbial strains help in agriculture? By fixing atmospheric nitrogen, solubilizing phosphorus and iron, decomposing organic waste, and out-competing soil pathogens, microbial strains improve nutrient availability, crop health, and yield stability. Are microbial strains safe for organic farming? Yes. All our microbial products are approved for organic agriculture. They are naturally derived, non-toxic, and free of synthetic chemicals, aligning with sustainable and eco-friendly farming practices. What are examples of microbial strains? Common examples include Azospirillum brasilense (nitrogen fixer), Bacillus amyloliquefaciens (plant growth promoter), and Ampelomyces quisqualis (biocontrol of powdery mildew). Nitrogen Cyclers Alcaligenes denitrificans Performs denitrification, reducing nitrates (NO₃⁻) to nitrogen gas (N₂) in anoxic zones. Ideal for mitigating nitrate pollution in runoff and wastewater. Azospirillum brasilense & Azospirillum lipoferum Nitrogen-fixing bacteria that colonize cereal roots to improve nutrient uptake, root development, and yields by up to 29% under optimized conditions. Azotobacter vinelandii A free-living diazotroph that enhances soil nitrogen levels for non-legumes, reducing dependence on synthetic fertilizers. Plant Growth Promoters & Biocontrol Agents Bacillus amyloliquefaciens Produces auxins and lytic enzymes to stimulate growth and suppress soil-borne pathogens. Safe for non-targets. Bacillus circulans Solubilizes phosphorus and synthesizes indoleacetic acid for improved root growth and stress tolerance. Bacillus firmus Enhances phosphorus availability, stimulates fruit quality, and provides barrier protection against nematodes. Soil Nutrient Solubilizers Acidithiobacillus ferrooxidans A biofertilizer that solubilizes iron, making it available in iron-deficient soils and boosting chlorophyll synthesis. Acidithiobacillus novellus Oxidizes sulfur, improving sulfur availability and correcting deficiencies to increase yield and plant health. Acidithiobacillus thiooxidans Converts elemental sulfur and sulfide minerals into sulfate. Its acidophilic nature also aids in bioremediation of acid mine drainage and heavy-metal neutralization. Fungal Activators & Biocontrol Ampelomyces quisqualis A mycoparasitic fungus targeting powdery mildew. It infects pathogen reproductive structures, reducing disease spread without chemical fungicides. Aspergillus awamori, A. niger & A. oryzae Produce a suite of enzymes (cellulases, amylases, proteases) to accelerate composting, improve soil organic matter breakdown, and support bioremediation of pollutants. Our Products AMF Antifeedant Bio Compost Degrading Biocontrol Biofungicides Bionematicides Bioremediation Denitrification Iron Solubilizing Bacteria Larvicides Manganese Solubilizing Bacteria Nitrogen Fixing Bacteria Phosphorous Solubilizing Bacteria Plant Growth Plant Growth Promoters Post Harvest Treatment Potash Solubilizing Bacteria Probiotics Silica Solubilizing Bacteria Sulphur Solubilizing Bacteria Acetobacter xylinum Acetobacter xylinum is a beneficial bacterium known for producing bacterial cellulose, a biopolymer with valuable applications in agriculture. Its presence in soil enhances plant growth and resilience by improving soil structure, increasing moisture retention, and enhancing nutrient availability. These benefits are especially valuable in arid and challenging environments. View Species Acidithiobacillus ferrooxidans Acidithiobacillus Ferrooxidans acts as a biofertilizer, enhancing nutrient availability by solubilizing soil iron, crucial for plants in iron-deficient soils. View Species Acidithiobacillus novellus Acidithiobacillus novellus sulfur oxidation in soil, improving nutrient availability for crops, particularly aiding in sulfur deficiency in soils, thereby boosting yield and plant health. View Species Acidithiobacillus thiooxidans Acidithiobacillus thiooxidans is a highly efficient sulfur-oxidizing bacterium that converts elemental sulfur and sulfide minerals into sulfate, enhancing soil nutrient availability and supporting crop growth. Its acidophilic nature allows it to thrive in extreme environments, making it a vital tool for bioremediation efforts, such as treating acid mine drainage and neutralizing soil contamination caused by heavy metals. Additionally, A. thiooxidans is widely used in bioleaching processes to extract valuable metals from low-grade ores, contributing to sustainable industrial and environmental practices. View Species Alcaligenes denitrificans Alcaligenes denitrificans is a denitrifying bacterium that plays a crucial role in the nitrogen cycle. It reduces nitrates (NO₃⁻) to nitrogen gas (N₂) under anoxic conditions, effectively mitigating nitrate pollution in agricultural runoff and wastewater. This bacterium is also utilized in bioremediation projects to address nitrogen-related contamination, contributing to sustainable water management and soil health. Its activity helps balance nitrogen levels, reducing environmental impacts and supporting ecosystem stability. View Species Ampelomyces quisqualis Ampelomyces quisqualis is a mycoparasitic fungus widely known for its ability to parasitize powdery mildew fungi, making it an important biological control agent in agriculture. It infects and disrupts the reproductive structures of powdery mildew pathogens, reducing their spread and impact on crops. This fungus thrives on a variety of host plants, providing eco-friendly and sustainable solutions for managing powdery mildew in fruits, vegetables, and ornamental plants. Its natural mode of action minimizes the need for chemical fungicides, supporting integrated pest management strategies and promoting environmental health. View Species Aspergillus awamori Aspergillus awamori solubilizes unavailable phosphorus in acidic soil, enhancing plant nutrient uptake and drought resistance. Restores soil fertility through organic matter breakdown. View Species Aspergillus niger Aspergillus niger is a beneficial filamentous fungus widely used in agriculture for its ability to produce enzymes that enhance composting and improve soil fertility. Known for breaking down organic matter through enzymes - cellulases, amylases, and pectinases, Asp. niger accelerates the decomposition of agricultural waste into nutrient-rich compost. This compost acts as a natural fertilizer, enriching the soil with essential nutrients, improving its structure, and promoting water retention. Additionally, Asp. niger contributes to bioremediation by degrading harmful chemicals and pollutants, making it an eco-friendly solution for sustainable waste management. As a fungal activator, it plays a crucial role in integrated pest management by indirectly suppressing soil-borne pathogens and pests, fostering healthier and more resilient crops. View Species Aspergillus oryzae Aspergillus oryzae is a filamentous fungus widely utilized in industrial and agricultural applications due to its enzymatic versatility. It plays a crucial role in food and beverage fermentation by producing amylases, cellulases, and proteases, which catalyze the breakdown of complex carbohydrates and proteins. In agriculture, A. oryzae is integral to composting processes, where its enzymatic activity accelerates the decomposition of organic matter, enhancing nutrient cycling and improving soil fertility. The ability of A. oryzae to convert agricultural waste into nutrient-rich compost makes it a critical component of sustainable farming practices and organic waste management, bridging industrial biotechnology and eco-friendly agricultural and environmental solutions. View Species Azospirillum brasilense Azospirillum brasilense, a plant growth-promoting bacterium, significantly enhances root development and nutrient uptake in crops such as wheat, maize, and rice. This leads to improved plant growth, higher nutrient efficiency, and increased yields, making it a valuable tool for sustainable agriculture." Supporting References: Azospirillum has been shown to improve root development and nutrient uptake, enhancing crop yields under various conditions (Okon & Itzigsohn, 1995). Inoculation with Azospirillum brasilense increases mineral uptake and biomass in crops like maize and sorghum (Lin et al., 1983). Studies have documented up to 29% increased grain production when maize was inoculated with Azospirillum brasilense, particularly when combined with nutrient applications (Ferreira et al., 2013). Enhanced growth and nutrient efficiency in crops such as lettuce and maize have also been reported, supporting its role in sustainable agriculture (da Silva Oliveira et al., 2023) (Marques et al., 2020). View Species Azospirillum lipoferum In agriculture Azospirillum lipoferum is used to promote root development and nitrogen fixation in various crops, leading to enhanced growth and higher agricultural productivity. View Species Azospirillum spp. Azospirillum spp. a nitrogen fixing bacteria in agriculture to enhance plant growth and commonly applied to roots of cereals and grasses to improve yield. View Species Azotobacter vinelandii Azotobacter vinelandii is a free-living diazotroph of notable agronomic value, contributing to sustainable crop production by biologically fixing atmospheric nitrogen into plant-available forms. Its ability to enhance soil nitrogen content is particularly beneficial for non-leguminous cropping systems, reducing dependence on synthetic nitrogen inputs and improving long-term soil fertility. View Species Bacillus amyloliquefaciens Bacillus amyloliquefaciens, produces plant growth hormones, suppresses pathogens with enzymes, acts as biofertilizer and biopesticide, improves soil fertility, safe for non-target species and humans. View Species Bacillus azotoformans Used as seed inoculant, enhances germination and root development, improves water and nutrient transport, environmentally safe. View Species Bacillus azotoformans Used as seed inoculant, enhances germination and root development, improves water and nutrient transport, environmentally safe. View Species Bacillus circulans Bacillus circulans produces indoleacetic acid, solubilizes phosphorus improving absorption, enhances plant growth and yield, safe and eco-friendly. View Species Bacillus firmus Bacillus firmus enhances phosphorus availability in soil, stimulates root growth, improves fruit quality, and protects against soil-borne diseases. Compatible with bio-pesticides and bio-fertilizers. View Species 1 2 3 ... 7 1 ... 1 2 3 4 5 6 7 ... 7 For personalized advice on the best strains for your needs, contact our technical team for expert support. Contact us 1 2 3 ... 100 1 ... 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ... 100

  • Arbuscular Mycorrhizal Fungi Manufacturer & Supplier

    Glomus intraradices is a mycorrhizal fungus that enhances plant nutrient uptake, especially phosphorus, promoting stronger crop growth, yield, and soil health in agriculture. < Microbial Species Arbuscular Mycorrhizal Fungi Arbuscular mycorrhizal fungi (AMF) establish mutualistic associations with the roots of approximately 80% of terrestrial plant species. Through an extensive extraradical hyphal network, AMF significantly expand the absorptive surface area of root systems, facilitating enhanced uptake of essential nutrients—particularly phosphorus, nitrogen, and micronutrients—beyond the depletion zones of roots. In addition to nutrient acquisition, AMF play a key role in improving plant tolerance to abiotic stresses such as drought, salinity, and heavy metal toxicity by modulating physiological responses and maintaining water balance. At the ecosystem level, AMF contribute to soil aggregation and long-term fertility by secreting glomalin and stabilizing soil particles. This symbiosis forms a foundational component of belowground biodiversity and function, offering a biologically-driven pathway to improved plant performance and soil resilience in both natural and managed systems. Product Enquiry What Why Benefits Practical Applications Buying Guide Maximizing Success FAQ What Are AMF? Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that form symbiotic relationships with over 80% of terrestrial plant species. These specialized fungi belong to the phylum Glomeromycota and create intricate networks of microscopic hyphae that extend far beyond plant root systems, effectively serving as extensions of the root network. The symbiotic relationship involves the fungi colonizing plant roots both intracellularly and intercellularly, forming characteristic structures called arbuscules where nutrients are exchanged between the fungus and the plant. mdpi+2 In this mutualistic partnership, plants provide the fungi with sugars produced through photosynthesis, while the AMF dramatically enhance the plant's ability to absorb essential nutrients—particularly phosphorus, nitrogen, and micronutrients—from the soil. This ancient symbiosis, which has existed for approximately 400 million years, represents one of nature's most successful collaborative relationships. mdpi+2 Why AMF Are Essential for Sustainable Agriculture The importance of arbuscular mycorrhizal fungi for sale in modern agriculture cannot be overstated, particularly as the industry faces mounting challenges from climate change, soil degradation, and the need for sustainable farming practices. mdpi Enhanced Nutrient Uptake and Bioavailability AMF excel at improving plant access to immobile nutrients, especially phosphorus, which is often present in soil but locked in forms plants cannot directly absorb. The extensive hyphal networks can explore soil volumes up to 100 times larger than roots alone, accessing nutrients from micropores and soil aggregates that roots cannot penetrate. Studies demonstrate that up to 80% of plant phosphorus uptake can occur through mycorrhizal pathways rather than direct root absorption. nph.onlinelibrary.wiley+3 Soil Health and Structure Improvement These beneficial fungi produce glomalin, a glycoprotein that acts as a natural soil binding agent, creating stable soil aggregates that improve water retention, reduce erosion, and enhance overall soil structure. This aggregation increases water infiltration rates, reduces surface runoff, and provides better gas exchange within the soil profile. frontiersin Stress Tolerance and Resilience Plants colonized by AMF demonstrate significantly improved tolerance to various environmental stresses, including drought, salinity, heavy metals, and temperature extremes. Research shows that mycorrhizal plants can maintain higher photosynthetic rates and biomass production under stress conditions compared to non-mycorrhizal counterparts. frontiersin+1 FAQ General Questions How long does it take to see benefits from AMF inoculation? Initial root colonization typically occurs within 2-4 weeks of application, with visible plant benefits becoming apparent after 6-8 weeks. Maximum benefits develop over the entire growing season as the fungal network matures. mycorrhizae Can AMF be used with all plant species? AMF form symbiotic relationships with approximately 80% of plant species. Notable exceptions include members of the Brassicaceae family (cabbage, broccoli, radishes) and some other plant families that do not form mycorrhizal associations. ruralsprout+1 Do AMF work in all soil types? AMF can function in most soil types but are particularly beneficial in nutrient-poor soils or those with low phosphorus availability. They are less effective in soils with very high phosphorus levels, which can suppress symbiotic development. academic.oup+2 How do soil pH and environmental conditions affect AMF? AMF can tolerate a wide pH range (5.0-8.5) but function optimally in slightly acidic to neutral soils (pH 6.0-7.5). Extreme pH conditions can limit fungal diversity and effectiveness. frontiersin+1 Application and Management When should I avoid using chemical fertilizers with AMF? High levels of readily available phosphorus (>50 ppm) can inhibit AMF development. When using AMF, reduce phosphorus fertilizer applications and rely on the fungi to improve phosphorus availability from existing soil reserves. pmc.ncbi.nlm.nih Can I apply AMF through irrigation systems? Yes, properly formulated liquid AMF products can be applied through drip irrigation or fertigation systems. Ensure the product is designed for irrigation use and filter out any large particles that might clog emitters. rd2 What happens to AMF during soil cultivation? Intensive tillage can damage fungal networks and reduce AMF effectiveness. When possible, use minimal tillage practices or reapply AMF after soil disturbance. pmc.ncbi.nlm.nih How do I know if my AMF application was successful? Root colonization assessment requires laboratory analysis, but indicators of successful inoculation include improved plant vigor, enhanced stress tolerance, and reduced fertilizer requirements. Soil tests may show improved nutrient availability over time. Troubleshooting and Optimization Why might AMF inoculation fail to show benefits? Common causes include poor product quality, inappropriate storage, excessive phosphorus fertilization, fungicide applications, extreme soil conditions, or application to non-host plant species. mdpi+1 Can I make my own AMF inoculum? While possible, producing quality AMF inoculum requires specialized techniques and equipment. Commercial products typically provide more consistent results and guaranteed quality standards. projects.sare How do AMF interact with existing soil microorganisms? AMF generally work synergistically with beneficial soil microorganisms and can even help recruit beneficial bacteria to the root zone. However, they may compete with pathogenic organisms for resources and root colonization sites. nph.onlinelibrary.wiley Practical Applications of AMF Agricultural Applications Field Crops: AMF have demonstrated particular effectiveness in cereals, legumes, and root vegetables. In maize production, inoculation consistently improves nutrient uptake and stress tolerance. Soybeans show enhanced nodulation and nitrogen fixation when co-inoculated with both rhizobia and AMF.mdpi+2 Horticultural Systems: Vegetable production benefits significantly from mycorrhizal inoculation, with improved transplant success rates, enhanced fruit quality, and reduced fertilizer requirements. Greenhouse production systems see particular benefits due to the controlled environment's compatibility with fungal establishment.scielo Fruit Tree Production: Orchard crops demonstrate improved establishment, drought tolerance, and fruit production when inoculated with AMF. The symbiosis is particularly valuable during the vulnerable establishment period following planting.indogulfbioag Specialized Growing Systems Hydroponic Integration: Recent research demonstrates that AMF can be successfully integrated into hydroponic systems, providing benefits even in soilless growing media. The fungi help maintain root health and improve nutrient utilization in these intensive production systems.indogulfbioag Restoration and Rehabilitation: AMF are essential for ecosystem restoration projects, helping establish plant communities on degraded soils and improving long-term site stability.mdpi Urban Agriculture: Container growing and rooftop gardens benefit from AMF inoculation, which helps plants cope with the limited soil volumes and stressful conditions common in urban environments. Comprehensive Buying Guide for AMF Quality Indicators and Standards When selecting arbuscular mycorrhizal fungi for sale, several critical factors determine product quality and effectiveness:lebanonturf+1 Spore Count and Viability: High-quality products contain minimum concentrations of 100-300 viable spores per gram, with clear labeling of spore density at manufacture date. Products should include expiration dates and guarantee viability throughout the specified shelf life.cdnsciencepub+1 Species Diversity: Premium formulations contain multiple AMF species to ensure compatibility across different plant types and soil conditions. Look for products containing proven effective strains such as Rhizophagus irregularis, Funneliformis mosseae, and Claroideoglomus etunicatum.rd2+1 Carrier and Formulation Quality: Stable formulations avoid ingredients that can desiccate or kill fungal propagules. Quality products use inert carriers and avoid excessive moisture or soluble salts that compromise fungal viability.lebanonturf Product Types and Formulations Granular Products: Ideal for soil incorporation during planting or transplanting. These products typically have longer shelf life and are easier to handle in larger applications.rd2 Liquid Concentrates: Suitable for drip irrigation systems and foliar applications, though they may have shorter shelf life and require careful storage.rd2 Powder Formulations: Excellent for seed coating and root dipping applications, offering precise application control and good soil integration.rd2 Tablet or Slow-Release Forms: Convenient for individual plant applications, particularly in landscaping and containerized plant production. Storage and Handling Requirements Proper storage is critical for maintaining fungal viability:lebanonturf Temperature Control: Store products at cool, consistent temperatures, ideally between 50-70°F (10-21°C). Avoid exposure to freezing temperatures or excessive heat. Moisture Management: Maintain low moisture conditions to prevent premature spore germination while avoiding desiccation. Optimal moisture content typically ranges from 5-10%. Light Protection: Store products in opaque containers away from direct sunlight, which can damage fungal propagules. Chemical Compatibility: Keep AMF products separate from fungicides, chemical fertilizers, and other compounds that may reduce fungal viability. Scientific Benefits of AMF Quantifiable Agricultural Impacts Recent meta-analyses provide compelling evidence for AMF effectiveness in agricultural systems. A comprehensive study of 231 potato field trials across Europe and North America revealed an average yield increase of 9.5% (3.9 tons/hectare), with nearly 80% of trials exceeding the profitability threshold. Similar benefits have been documented across diverse crops, with some studies reporting yield increases of 50% or more in nutrient-limited soils.pmc.ncbi.nlm.nih+1 Biocontrol and Disease Resistance AMF provide natural protection against soil-borne pathogens through multiple mechanisms:indogulfbioag+1 Competition for Resources: The fungi outcompete harmful microorganisms for root colonization sites and soil nutrients. Induced Systemic Resistance (ISR): AMF trigger the plant's natural defense mechanisms, creating a primed immune system that responds more effectively to pathogen attacks.frontiersin Physical Barriers: The fungal networks create protective biofilms around roots that prevent pathogen infiltration. Enhanced Plant Health: Better-nourished plants with robust root systems are naturally more resistant to disease and pest pressure. Carbon Sequestration and Climate Benefits AMF play a crucial role in global carbon cycling, with estimates suggesting they sequester approximately 13 gigatons of CO₂ equivalent annually—equivalent to 36% of annual fossil fuel emissions. The fungi facilitate carbon translocation from plants into soil aggregates, where it remains stable for extended periods.indogulfbioag Maximizing Success with AMF Best Practices for Implementation Start Early: Apply AMF at planting or transplanting for optimal colonization and maximum benefit duration.mycorrhizae+1 Create Favorable Conditions: Maintain appropriate soil moisture, avoid excessive chemical inputs, and minimize soil disturbance to support fungal establishment.pmc.ncbi.nlm.nih Monitor and Adjust: Track plant performance, soil health indicators, and adjust fertilizer programs to complement AMF activity.agrarforschungschweiz Quality Assurance: Source products from reputable suppliers with quality guarantees and proper storage recommendations.lebanonturf+1 Integration with Sustainable Agriculture AMF represent a cornerstone technology for sustainable agricultural systems, offering multiple benefits that align with environmental stewardship goals. By reducing dependence on chemical fertilizers, improving soil health, and enhancing crop resilience, these beneficial fungi contribute to agricultural systems that are both productive and environmentally responsible.maxapress+1 The growing body of scientific evidence supporting AMF effectiveness, combined with improving product quality and application techniques, positions arbuscular mycorrhizal fungi as an essential tool for modern agriculture. As farmers and growers increasingly recognize the value of biological solutions, AMF adoption will continue to expand, contributing to more sustainable and resilient food production systems worldwide. Through careful product selection, proper application, and integration with sound agricultural practices, arbuscular mycorrhizal fungi for sale offer producers a proven pathway to enhanced crop performance, improved soil health, and sustainable agricultural success. Arbuscular Mycorrhizal Fungi Our Products Explore our premium AMF products, specially formulated to enhance nutrient uptake, boost root growth, and improve plant resilience in agricultural soils, fostering healthier, high-yield crops. Glomus mosseae Glomus mosseae (Funneliformis mosseae) is a highly effective and widely distributed species of arbuscular mycorrhizal fungus (AMF). These fungi are obligate biotrophs, meaning they form a symbiotic (mutualistic) relationship with the roots of over 80% of terrestrial plant species, including a vast majority of agricultural and horticultural crops. This partnership enhances plant growth, improves nutrient uptake, and increases tolerance to various environmental stresses. G. mosseae is recognized for its broad host range and adaptability to diverse soil conditions, making it a valuable component of sustainable agricultural and horticultural practices. View Species Rhizophagus Intraradices Rhizophagus intraradices (previously Glomus intraradices) is an arbuscular mycorrhizal fungus used in agriculture, that improves root structure enhances plant nutrient uptake, especially phosphorus, improving plant growth, stress resilience, and soil health in sustainable agriculture. View Species Serendipita indica Serendipita indica (formerly Piriformospora indica) is a highly effective endophytic fungus recognized for significantly boosting plant growth, resilience, and productivity through beneficial root colonization. Known for its wide range of beneficial effects, Serendipita indica is extensively utilized in agriculture, horticulture, forestry, and medicinal plant cultivation to optimize plant health and performance. View Species 1 1 ... 1 ... 1 Resources Read all

  • Biofungicides for plants - Manufacturer & Exporter | Indogulf BioAg

    Indogulf BioAg is a Manufacturer & Global Exporter of Fungcide for plants, bacillus subtilis, Lactobacillus Plantarum, Pseudomonas SPP & other Bacterias. Contact us @ +1 437 774 3831 < Microbial Species Biofungicides Biofungicides are effective biological agents that specifically control various fungal diseases in plants, significantly reducing the incidence of infections and promoting healthier, more resilient agricultural crops. Product Enquiry What Why How FAQ What it is Biofungicides are natural or biological agents used to control fungal diseases in crops. These agents can include beneficial fungi, bacteria, viruses, and other microorganisms that suppress fungal pathogens. Biofungicides offer an environmentally friendly alternative to synthetic fungicides, reducing chemical inputs and promoting sustainable agricultural practices. Why is it important Environmental Safety : Biofungicides are typically less harmful to non-target organisms and have minimal impact on beneficial insects, pollinators, and natural predators. Resistance Management : Biofungicides can help manage resistance issues that arise with synthetic fungicides, as they employ multiple modes of action against fungal pathogens. Residue Management : Biofungicides often leave little to no residues on crops, addressing concerns related to pesticide residues in food and the environment. How it works Biofungicides control fungal diseases through various mechanisms: Antagonism : Beneficial microorganisms compete with pathogenic fungi for nutrients and space, inhibiting their growth and colonization on plant surfaces. Parasitism : Some biofungicides parasitize fungal pathogens by penetrating their cells or producing enzymes that degrade fungal cell walls. Induced Resistance : Biofungicides can trigger systemic acquired resistance (SAR) in plants, enhancing their natural defense mechanisms against fungal infections. Antibiosis : Biofungicides produce secondary metabolites or antibiotics that directly inhibit fungal growth and spore germination. Biofungicides are often integrated into holistic disease management strategies, such as integrated pest management (IPM) programs, where they complement cultural practices and crop rotation to enhance efficacy. FAQ Content coming soon! Biofungicides Our Products Explore our range of premium Biofungicides tailored to meet your agricultural needs, providing effective and environmentally friendly protection against fungal diseases. Ampelomyces quisqualis Ampelomyces quisqualis is a mycoparasitic fungus widely known for its ability to parasitize powdery mildew fungi, making it an important biological control agent in agriculture. It infects and disrupts the reproductive structures of powdery mildew pathogens, reducing their spread and impact on crops. This fungus thrives on a variety of host plants, providing eco-friendly and sustainable solutions for managing powdery mildew in fruits, vegetables, and ornamental plants. Its natural mode of action minimizes the need for chemical fungicides, supporting integrated pest management strategies and promoting environmental health. View Species Bacillus subtilis Bacillus subtilis is a Gram-positive, endospore-forming bacterium widely studied for its roles in agriculture, biotechnology, and molecular biology. It functions as a biocontrol agent by producing antimicrobial compounds, enhances plant growth via phytohormone production and nutrient solubilization, and participates in bioremediation by degrading organic pollutants. Its utility in industrial processes stems from its production of enzymes, antibiotics, and biopolymers. As a model organism, B. subtilis provides insights into sporulation, biofilm formation, and gene regulation, underscoring its scientific and practical significance. View Species Bacillus tequilensis Bacillus tequilensis is a Gram-positive, endospore-forming bacterium with significant roles in agriculture and biotechnology. It enhances plant growth via phytohormone synthesis, nutrient solubilization, and antimicrobial activity against pathogens. Additionally, it contributes to bioremediation by degrading organic pollutants and produces industrially relevant enzymes. Its resilience to environmental stress underscores its potential for applications in sustainable agriculture, bioprocessing, and environmental remediation. View Species Chaetomium cupreum Chaetomium cupreum is a filamentous ascomycete fungus known for its biocontrol and biodegradation capabilities. It suppresses plant pathogens like Fusarium through antifungal metabolites and contributes to organic matter recycling via lignocellulose degradation. Its production of hydrolytic enzymes highlights its potential in sustainable agriculture and industrial biotechnology. View Species Fusarium proliferatum Non-pathogenic strains of Fusarium proliferatum offer promising potential in agriculture and biotechnology. These strains contribute to nutrient cycling by decomposing organic matter, enhancing soil health and fertility. Additionally, they are explored for their ability to produce industrially valuable enzymes and secondary metabolites that can be harnessed for biotransformation processes. Their metabolic diversity makes non-pathogenic F. proliferatum strains valuable for sustainable practices in agriculture and innovative applications in biotechnology. View Species Lactobacillus plantarum Lactobacillus plantarum is a facultative heterofermentative bacterium with diverse applications in health, agriculture, food technology, and biotechnology. Known for its probiotic properties, it enhances gut health by modulating the microbiome, strengthening the intestinal barrier, and producing antimicrobial compounds that inhibit pathogens. In food systems, it drives fermentation processes, producing lactic acid and bioactive metabolites that preserve food and enhance nutritional value, including B vitamins and antioxidants. In agriculture, L. plantarum offers significant benefits by controlling bacterial plant diseases, enhancing seed germination and seedling growth, improving root development, and inducing plant defense mechanisms. It supports plant growth by improving nutrient availability, enriching soil microbiota, and suppressing phytopathogens through the production of organic acids and antimicrobial peptides. Its genetic adaptability and metabolic versatility also make it valuable for enzyme production, metabolic engineering, and bioremediation, highlighting its role in sustainable health, agriculture, and bioprocessing applications. View Species Pediococcus pentosaceus Pediococcus pentosaceus is a Gram-positive lactic acid bacterium widely recognized for its dual role as a probiotic and as a biofungicide in agriculture. It produces lactic acid and a suite of antimicrobial peptides known as pediocins, which inhibit a broad spectrum of plant pathogens. Beyond pathogen suppression, it promotes plant growth through nutrient solubilization and induction of systemic resistance. View Species Pseudomonas spp. Pseudomonas spp. are versatile Gram-negative bacteria widely recognized for their role in biological control and plant health management. These bacteria produce antimicrobial compounds, enzymes, and secondary metabolites that effectively suppress plant pathogens, including fungi and bacteria, reducing disease incidence in crops. In agriculture, Pseudomonas spp. serve as eco-friendly alternatives to chemical pesticides, supporting sustainable farming practices. They also enhance plant stress tolerance by improving nutrient availability, promoting root growth, and inducing systemic resistance in plants. Their multifaceted benefits make Pseudomonas spp. essential for integrated pest management and environmentally responsible agriculture. View Species Trichoderma harzianum Trichoderma harzianum is a beneficial fungus widely used in agriculture for its biocontrol properties and plant growth-promoting effects. It manages fungal pathogens and soil-dwelling nematodes by producing antifungal metabolites and parasitizing harmful fungi, protecting crops from diseases. In addition to disease management, T. harzianum enhances seed germination, promotes robust plant growth, and strengthens plant defense mechanisms. Its ability to improve soil health and plant resilience makes it a vital tool in sustainable agriculture and integrated pest management strategies. View Species Trichoderma spp. Trichoderma spp. are widely recognized for their biocontrol capabilities in managing plant pathogens and soil-dwelling nematodes. These fungi displace causative agents by competing for resources and space, effectively reducing colonization opportunities for harmful fungi. Additionally, Trichoderma spp. produce enzymes and antimicrobial compounds that suppress the growth of plant pathogenic fungi, making them essential for sustainable agriculture and integrated pest management. View Species Trichoderma viride Trichoderma viride is a beneficial fungus widely used in agriculture for its ability to manage fungal pathogens and soil-dwelling nematodes. It enhances the stress tolerance of plant hosts and provides protection against fungal diseases by producing antifungal compounds and promoting plant defense mechanisms. Its role in improving plant resilience and controlling soil-borne pathogens makes it a key tool in sustainable agriculture and integrated pest management practices. View Species 1 1 ... 1 ... 1 Resources Read all

  • Bioremediation - Manufacturer & Exporter - Indogulf BioAg

    Bioremediation is the process of using living organisms, primarily microbes, to degrade, detoxify, or remove pollutants from the environment, such as soil, water, or air. Microorganisms like bacteria, fungi, and even plants are utilized to break down harmful substances into less toxic or non-toxic compounds. < Microbial Species Bioremediation Bioremediation is an eco-friendly process that uses microorganisms to break down or neutralise pollutants in soil, water, and air. By harnessing the natural metabolic processes of bacteria, fungi, and other microbes, bioremediation helps clean up contaminants such as oil spills, heavy metals, and industrial waste, making it an effective solution for environmental restoration. Product Enquiry What Why How FAQ What it is Bioremediation is the process of using living organisms, primarily microbes, to degrade, detoxify, or remove pollutants from the environment, such as soil, water, or air. Microorganisms like bacteria, fungi, and even plants are utilized to break down harmful substances into less toxic or non-toxic compounds. Why is it important Bioremediation is vital because it offers an eco-friendly and cost-effective solution to pollution problems. Unlike chemical methods, it reduces the use of harmful substances, helping restore contaminated ecosystems and protect human health. Its importance is amplified in treating oil spills, heavy metal contamination, and industrial waste. How it works Microorganisms metabolize pollutants as part of their natural processes. They can either convert harmful chemicals into less toxic ones or completely degrade them. Depending on the contaminant and environment, the bioremediation process may involve stimulating natural microbial activity (biostimulation) or introducing specific microbes (bioaugmentation) that are more effective at breaking down certain pollutants. FAQ Content coming soon! Bioremediation Our Products Explore our premium Bioremediation solutions designed to degrade pollutants, restore environmental balance, and improve soil and water quality through the power of specialized microbial species. Saccharomyces cerevisiae Saccharomyces cerevisiae is widely used in bioremediation for its ability to degrade pollutants and in probiotic applications to support gut health and enhance fermentation processes. View Species Bacillus polymyxa Bacillus polymyxa improves phosphorus availability by solubilizing phosphate, promotes plant growth through nitrogen fixation and hormone production, and aids bioremediation by breaking down organic pollutants—enhancing soil health for sustainable agriculture. View Species Thiobacillus novellus Thiobacillus novellus, an effective inoculant that oxidizes sulfur, enhancing nutrient availability for plants while supporting bioremediation in contaminated soils. View Species Thiobacillus thiooxidans Acidithiobacillus thiooxidans is a potent sulfur-oxidizing bacterium that enhances soil sulfur availability, drives bioleaching of metals, and contributes to wastewater and sludge treatment, supporting sustainable agriculture and bioremediation. View Species Alcaligenes denitrificans Alcaligenes denitrificans is a denitrifying bacterium that plays a crucial role in the nitrogen cycle. It reduces nitrates (NO₃⁻) to nitrogen gas (N₂) under anoxic conditions, effectively mitigating nitrate pollution in agricultural runoff and wastewater. This bacterium is also utilized in bioremediation projects to address nitrogen-related contamination, contributing to sustainable water management and soil health. Its activity helps balance nitrogen levels, reducing environmental impacts and supporting ecosystem stability. View Species Bacillus licheniformis Bacillus licheniformis is a robust, spore-forming bacterium widely recognized for its diverse applications in agriculture, bioremediation, and industrial processes. It enhances soil fertility by solubilizing phosphorus, fixing nitrogen, and producing plant growth-promoting substances like phytohormones. This bacterium also produces enzymes such as proteases, amylases, and cellulases, which contribute to the decomposition of organic matter and nutrient cycling. In bioremediation, B. licheniformis degrades pollutants, including hydrocarbons, and tolerates extreme environmental conditions. Additionally, its ability to produce antimicrobial compounds helps suppress plant pathogens, making it a valuable tool for sustainable agriculture and environmental management. View Species Bacillus macerans Bacillus macerans is a facultative anaerobic bacterium known for its ability to degrade complex carbohydrates such as cellulose, hemicellulose, and starch. This activity makes it highly effective in organic decomposition processes, such as composting and agricultural residue management, contributing to improved soil health and nutrient cycling. In industrial applications, B. macerans produces valuable enzymes like cellulases and amylases, which are used in biofuel production, paper processing, and textile industries. Its role in breaking down organic polymers also supports bioremediation efforts, helping manage agricultural and industrial waste sustainably.. View Species Citrobacter braakii Citrobacter braakii is a facultative anaerobic bacterium known for its metabolic versatility and potential in environmental and industrial applications. It is effective in bioremediation processes, particularly in removing heavy metals like chromium and cadmium through biosorption and bioaccumulation. This bacterium also contributes to nutrient cycling in soils by breaking down organic matter and releasing bioavailable forms of nutrients. Its ability to tolerate diverse environmental conditions makes it a candidate for wastewater treatment and soil remediation, supporting sustainable environmental management practices. View Species Citrobacter freundii Citrobacter freundii is a facultative anaerobic bacterium with significant roles in bioremediation, agriculture, and wastewater treatment. Known for its ability to reduce nitrates and detoxify heavy metals such as cadmium, lead, and chromium, it is widely used in mitigating environmental pollution. In agriculture, C. freundii contributes to nutrient cycling by breaking down organic matter, enhancing soil fertility. It also aids in wastewater treatment by degrading complex organic compounds, reducing chemical oxygen demand (COD), and improving water quality. With its metabolic flexibility and environmental resilience, C. freundii is a valuable tool in sustainable environmental management and industrial processes.. View Species Comamonas testosteroni Comamonas testosteroni is a versatile, aerobic, gram-negative bacterium renowned for its ability to degrade a wide range of organic pollutants, including aromatic hydrocarbons, phenols, and pesticides. This metabolic diversity makes it a critical agent in bioremediation projects aimed at detoxifying contaminated soils and water bodies. In wastewater treatment, C. testosteroni enhances the breakdown of complex organic compounds, reducing chemical oxygen demand (COD) and improving water quality. Its role in degrading xenobiotics and persistent organic pollutants highlights its significance in environmental sustainability and industrial waste management. The bacterium's resilience in diverse conditions further underscores its utility in eco-friendly applications. View Species Flavobacter aquatile Flavobacterium aquatile is an aquatic bacterium known for its role in nutrient cycling and organic matter decomposition in freshwater environments. It contributes to maintaining water quality by breaking down organic materials, such as carbohydrates and proteins, into bioavailable nutrients that support aquatic ecosystems. This bacterium also plays a role in wastewater treatment, aiding in the degradation of organic pollutants and reducing nutrient loads. Its ecological importance lies in its ability to enhance microbial diversity and stability in water systems, making it a valuable component in sustainable water management practices. View Species Flavobacter oceanosedimentum Flavobacterium oceanosedimentum is a marine bacterium commonly found in ocean sediments, where it plays a critical role in nutrient cycling and organic matter decomposition. This bacterium degrades complex organic materials, contributing to the recycling of nutrients essential for marine ecosystem health. Additionally, F. oceanosedimentum demonstrates potential in bioremediation, particularly in degrading hydrocarbons and other pollutants in marine environments. Its metabolic adaptability and ability to thrive in challenging sediment conditions make it a valuable organism for maintaining ecological balance and supporting sustainable marine resource management. View Species Nitrobacter alcalicus Nitrobacter alkalicus is a chemolithoautotrophic bacterium specializing in the oxidation of nitrite (NO₂⁻) to nitrate (NO₃⁻), a key step in the nitrogen cycle. This species is particularly adapted to thrive in alkaline environments, such as high-pH soils and wastewater systems, where it contributes to nitrogen transformation and nutrient availability for plants. Its activity supports soil fertility by enhancing nitrate levels, which are readily absorbed by crops. Additionally, N. alkalicus plays a significant role in wastewater treatment processes, helping to manage nitrogen levels and prevent harmful nitrite accumulation. Its resilience in high-pH conditions makes it essential for sustainable agricultural practices and environmental management. View Species Nitrobacter sp. Nitrobacter sp. are chemolithoautotrophic bacteria that play a critical role in the nitrogen cycle by oxidizing nitrite (NO₂⁻) into nitrate (NO₃⁻), a form readily available to plants as a nutrient. This process is vital for maintaining soil fertility and supporting agricultural productivity. In wastewater treatment, Nitrobacter species are integral to nitrification processes, preventing the accumulation of toxic nitrite and reducing nitrogen pollution. Their adaptability to diverse environmental conditions, including soil, freshwater, and wastewater systems, makes them indispensable in sustainable nitrogen management and ecological balance. These bacteria are widely utilized in bioreactors and bioaugmentation efforts for efficient nitrogen cycling. View Species Nitrobacter winogradski Nitrobacter winogradskyi is a chemolithoautotrophic bacterium central to the nitrogen cycle, converting nitrite (NO₂⁻) into nitrate (NO₃⁻). This transformation is critical for soil fertility, as nitrate is a primary nutrient for plant growth. Its activity supports sustainable agriculture by enhancing nitrogen availability in the soil. In environmental management, N. winogradskyi is essential in wastewater treatment processes, where it prevents toxic nitrite accumulation, ensuring efficient nitrogen removal. Its adaptability to various ecosystems, including soils and aquatic environments, underscores its role in maintaining ecological balance and promoting sustainable nitrogen management. This bacterium is also widely used in bioaugmentation and bioreactor systems to optimize nitrification. View Species Nitrococcus mobilis Nitrococcus mobilis is a chemolithoautotrophic bacterium primarily found in marine environments, where it plays a crucial role in the nitrogen cycle. This organism oxidizes nitrite (NO₂⁻) into nitrate (NO₃⁻), facilitating nitrogen transformation in oceanic ecosystems and supporting the productivity of aquatic life. Its role in maintaining nitrogen balance makes N. mobilis a key player in nutrient cycling, particularly in coastal and deep-sea environments. Additionally, its metabolic versatility and ability to thrive in saline conditions highlight its importance in sustaining marine ecosystems and contributing to global nitrogen dynamics. View Species Nitrosomonas europaea Nitrosomonas europaea is a chemolithoautotrophic bacterium that plays a vital role in the nitrogen cycle by oxidizing ammonia (NH₃) into nitrite (NO₂⁻), a key step in nitrification. This process is essential for converting ammonia into forms that plants can utilize, supporting soil fertility and agricultural productivity. In wastewater treatment, N. europaea is integral to removing ammonia, preventing toxic buildup, and ensuring efficient nitrogen removal. Its adaptability to diverse environments, including soils, freshwater, and wastewater systems, makes it a valuable organism for sustainable nitrogen management and environmental remediation. Its role in mitigating ammonia pollution also supports ecosystem health and biodiversity. View Species Pseudomonas citronellolis Azospirillum brasilense, a plant growth-promoting bacterium, significantly enhances root development and nutrient uptake in crops such as wheat, maize, and rice. This leads to improved plant growth, higher nutrient efficiency, and increased yields, making it a valuable tool for sustainable agriculture." Supporting References: Azospirillum has been shown to improve root development and nutrient uptake, enhancing crop yields under various conditions (Okon & Itzigsohn, 1995). Inoculation with Azospirillum brasilense increases mineral uptake and biomass in crops like maize and sorghum (Lin et al., 1983). Studies have documented up to 29% increased grain production when maize was inoculated with Azospirillum brasilense, particularly when combined with nutrient applications (Ferreira et al., 2013). Enhanced growth and nutrient efficiency in crops such as lettuce and maize have also been reported, supporting its role in sustainable agriculture (da Silva Oliveira et al., 2023) (Marques et al., 2020). View Species 1 2 1 ... 1 2 ... 2 Resources Read all

  • Bradyrhizobium Ekanii Manufacturer & Exporter | Nitrogen Fixing Bacteria | Microbial Species | Indogulf BioA

    Bradyrhizobium elkanii a bacterium that forms symbiotic relationships with legume roots, significantly improving nitrogen availability in the soil, which is essential for leguminous crop production. < Microbial Species Bradyrhizobium elkanii Bradyrhizobium elkanii a bacterium that forms symbiotic relationships with legume roots, significantly improving nitrogen availability in the soil, which is essential for leguminous crop production. Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Download Brochure Benefits Nitrogen Fixation Bradyrhizobium elkanii forms symbiotic relationships with leguminous plants, fixing atmospheric nitrogen into ammonia, which enhances soil fertility and plant growth. Enhanced Nutrient Availability It enhances the availability of essential nutrients such as phosphorus and iron to the host plant, contributing to improved plant health and yield. Stress Tolerance Bradyrhizobium elkanii produces stress-protective compounds like exopolysaccharides, aiding plants in coping with environmental stresses such as drought and salinity. Biocontrol Agent It competes with pathogenic microorganisms in the rhizosphere, helping to suppress plant diseases and promote healthier plant growth. Dosage & Application Additional Info Scientific References Mode of Action FAQ Scientific References Scientific References and Molecular Mechanisms of Symbiosis (2025 Update) Overview of Bradyrhizobium elkanii Symbiotic Signaling The establishment of B. elkanii-legume symbiosis is a sophisticated molecular dialogue involving plant-derived signals (flavonoids), bacterial Nod factors (NFs), Type III secretion system (T3SS) effectors, and host-encoded resistance proteins. This intricate regulatory network determines host specificity, nodule organogenesis, and nitrogen fixation efficiency. 1. Molecular Signaling Initiation Flavonoid-Mediated Activation Host-to-Bacterium Signal:Legume roots experiencing nitrogen starvation exude flavonoid compounds (e.g., genistein, daidzein, luteolin) into the rhizosphere. These flavonoids penetrate the B. elkanii cell membrane and bind to the NodD regulatory protein, a member of the LysR family of transcriptional regulators. Key Research Findings: Flavonoid concentrations as low as 10⁻⁸ M activate nod gene expression in B. elkanii Different legume species exude distinct flavonoid profiles, contributing to host specificity Transcription of the nodYABCSUIJnolMNOnodZ operon is directly dependent upon NodD-flavonoid complexes TtsI (transcriptional activator of T3SS) is also responsive to flavonoids and coordinates both Nod factor and T3SS expression Regulatory Architecture The B. elkanii regulatory circuit involves: NodD: LysR-type regulator controlling nod gene expression NodW: Regulatory protein modulating flavonoid recognition TtsI: Transcriptional regulator of T3SS genes, activated by plant flavonoids Coordination of these regulators ensures spatiotemporal expression of symbiotic genes 2. Nod Factor Biosynthesis and Host Recognition Structure and Function Nod Factors (NFs):Nod factors are lipochitooligosaccharides (LCOs) comprising a backbone of 3–5 N-acetyl-D-glucosamine (GlcNAc) units with a long-chain fatty acyl group (C16–C18) attached to the non-reducing terminus. Nod Gene Clusters in B. elkanii: nodA: Encodes N-acetyl transferase; transfers the acyl chain to the GlcNAc backbone nodB: N-acetyl lyase; removes N-acetyl group from the non-reducing terminus nodC: Chitin synthase; synthesizes the GlcNAc backbone nodS, nodU, nodI, nodJ: Involved in modification and transport of Nod factors nodZ: Encodes a glucosidase involved in Nod factor modification for B. elkanii-specific legume recognition Nod Factor Modification B. elkanii produces modified Nod factors unique to this species: Acetyl substitution patterns differ between strains Host-specific decorations on the oligosaccharide backbone determine compatibility with legume receptors (NFRs: Nod Factor Receptors) Molecular recognition is highly specific; B. elkanii NF structure triggers nodulation in soybean (Glycine max), but not in hosts compatible with other rhizobia Structural Variations and Host Specificity B. elkanii genomes harbor extensive nodulation gene repertoires: Multiple nod gene variants on symbiotic islands allow synthesis of a spectrum of Nod factor structures Comparative genomic analysis reveals gene duplications and deletions affecting Nod factor decoration These variations contribute to the competitive nodulation phenotype of B. elkanii and its ability to nodulate multiple legume hosts at variable efficiency 3. Type III Secretion System (T3SS) and Effector Proteins T3SS Architecture The T3SS is a molecular syringe-like apparatus embedded in the bacterial cell envelope that delivers effector proteins (Nops: nodulation outer proteins) directly into host plant cells. T3SS Components in B. elkanii: RhcJ: Outer membrane channel protein RhcV: Inner membrane channel protein RhcQ: ATPase providing energy for protein secretion RhcC, RhcD, RhcE, RhcF: Basal body proteins FlhA, FliK, FliP: Apparatus assembly proteins Transcriptional Control: T3SS gene expression is controlled by TtsI (transcriptional activator) TtsI is activated by plant flavonoids, creating a coordinated response with Nod factor synthesis The T3SS is activated only in the presence of compatible plant roots, preventing wasteful energy expenditure in the soil T3SS Effector Proteins and Functions NopL: Key Determinant for Nodule Organogenesis Function: NopL is among the most critical T3SS effectors, particularly for B. elkanii USDA61 symbiosis with certain legume species (e.g., Vigna mungo). NopL-deleted mutants form infection threads on Vigna mungo roots but fail to establish nodules, indicating its essential role in nodule primordia formation NopL is exclusively conserved among Bradyrhizobium and Sinorhizobium genera, suggesting ancient evolutionary origin Phylogenetic analysis indicates NopL diverged from the canonical T3SS lineage, suggesting specialized symbiotic function Mechanism: NopL enters host cell nuclei and likely interacts with plant transcription factors Suppresses host immune responses that would otherwise block infection Triggers expression of early nodulation genes required for meristem initiation Bel2-5: NF-Independent Nodulation Effector Dual Functions: In some legumes (e.g., soybean nfr1 mutants), Bel2-5 can trigger nodulation independently of Nod factors In soybean carrying the Rj4 allele (dominant resistance gene), Bel2-5 acts as a virulence factor, triggering immune responses that prevent infection Structural Features: Contains ubiquitin-like protease (ULP) domain Two EAR (ethylene-responsive element-binding factor-associated amphiphilic repression) motifs for transcriptional regulation Nuclear localization signal (NLS) enabling entry into plant cell nuclei Internal repeat sequences with unknown function Shares structural similarity with XopD from the plant pathogen Xanthomonas campestris pv. vesicatoria Domain-Function Correlation: The C-terminal ULP domain and upstream regions are critical for Bel2-5-dependent nodulation phenotypes Mutations in EAR motifs abolish nodulation ability Deletion of NLS impairs nuclear targeting and symbiotic function InnB: Strain-Specific Symbiotic Modulator Host-Specific Effects: InnB promotes nodulation on Vigna mungo cultivars InnB restricts nodulation on Vigna radiata cv. KPS1 This differential phenotype reflects distinct recognition mechanisms in different legume species Expression and Localization: innB expression is flavonoid-dependent and TtsI-regulated InnB protein is secreted via T3SS and translocated into host cells Adenylate cyclase assays confirm T3SS-dependent translocation into nodule cells NopM: Ubiquitin Ligase Triggering Senescence Function: NopM triggers early senescence-like responses in incompatible hosts (e.g., Lotus species). Possesses E3 ubiquitin ligase domain and leucine-rich-repeat domain Acts similarly to PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) in pathogenic bacteria Mediates ubiquitination of host target proteins, leading to degradation and immune responses Results in browning of nodules and disrupted symbiosis Phylogenetic Conservation: NopM homologs are found in both pathogenic and symbiotic bacteria, highlighting the evolutionary relatedness of virulence and symbiotic mechanisms NopF: Infection Thread Inhibitor Role in Host Specificity: NopF triggers inhibition of infection thread formation in Lotus japonicus Gifu Represents a post-recognition checkpoint for host-pathogen compatibility Allows alternative legume accessions (L. burttii, L. japonicum MG-20) to proceed with symbiosis, despite presence of NopF NopP2: Fine-Tuning Symbiotic Efficiency Function: NopP2 fine-tunes symbiotic effectiveness with Vigna radiata. Located within the symbiotic island near the nif cluster Differential effects depending on host genotype and strain background Contributes to variable nodulation phenotypes among B. elkanii strains 4. Host Specificity and Rj Gene-Mediated Resistance The Rj Gene System in Soybean Soybean (Glycine max) possesses a dominant host resistance system controlled by Rj (Rejection) genes that restrict nodulation by specific Bradyrhizobium strains. Rj4 Gene: Encodes a thaumatin-like protein (TLP), a member of the pathogenesis-related (PR-5) protein family Structurally similar to plant anti-fungal proteins Restricts nodulation by many B. elkanii strains, particularly Type B strains (e.g., USDA61) Soybean cultivars carrying Rj4 are incompatible with B. elkanii but compatible with Bradyrhizobium diazoefficiens USDA110 Rj2 Gene: Encodes a TIR-NBS-LRR protein (Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat) Represents a receptor-like immune protein structurally similar to plant R proteins for pathogen resistance Critical amino acid I490 (isoleucine) in Rj2 determines incompatibility with Bradyrhizobium diazoefficiens USDA122 Restricts specific rhizobial strains but allows infection by compatible strains Rj3 Gene: Restricts B. elkanii Type B strains (e.g., BLY3-8, BLY6-1, USDA33) despite allowing nodulation by B. japonicum USDA110 T3SS and its effectors are critical for Rj3-mediated incompatibility Mutations in T3SS components (TtsI, RhcJ) overcome Rj3 restriction, confirming T3SS involvement Gene-for-Gene Model of Symbiotic Specificity The B. elkanii-soybean system exemplifies a gene-for-gene interaction: Bacterial avirulence gene (avr): T3SS effector genes (e.g., nopL, bel2-5, nopM) function as avirulence determinants Plant resistance gene (R): Soybean Rj genes encode receptors recognizing effector-triggered immune responses Incompatibility occurs when bacterial effector matches soybean R gene recognition specificity Compatibility requires bacterial effectors that evade or suppress Rj-mediated immunity 5. Infection and Nodule Development Infection Thread Formation Stages: Pre-infection: Nod factors bind to NFR1/NFR5 receptors on legume root epidermis, activating early symbiotic signaling Infection initiation: B. elkanii invades through root hair curling (Nod factor-dependent) or via crack entry (T3SS-dependent in certain genotypes) Intercellular infection: Bacteria travel through infection threads (wall-bound tubular structures) into the cortex Release and bacteroid formation: Bacteria are released into cortical cells and enclosed within plant-derived peribacteroid membranes Role of T3SS in Infection Nod factor-independent nodulation: B. elkanii T3SS effectors (particularly Bel2-5) can trigger nodulation of soybean nfr1 mutants lacking functional Nod factor receptors Infection thread progression: T3SS suppresses plant defense responses (ROS production, ethylene synthesis) that normally block infection thread elongation Bacterial release: T3SS effectors facilitate bacterial transition from infection threads into cortical cells for bacteroid development Nodule Organogenesis and Development Transcriptional Reprogramming: B. elkanii T3SS effectors and Nod factors activate soybean early nodulation genes: ENOD40, ENOD93, NIN (Nodule Inception), NSP1, NSP2 These plant genes activate meristem-like programs in cortical cells, initiating nodule primordia Coordinated T3E activity (NopL, Bel2-5, NopP2) is essential for primordia formation Nodule Maturation: Infected cells undergo endoreduplication (multiple rounds of DNA replication without cell division) Cortical cells expand to accommodate dividing bacterial cells Peribacteroid membranes establish nutrient exchange compartments Gibberellin Role: B. elkanii synthesizes gibberellin precursor (GA₉) via cytochrome P450 monooxygenase Host soybean expresses GA 3-oxidases (GA3ox) within nodules, converting GA₉ to bioactive GA₄ GA₄ regulates nodule size, influences meristem bifurcation, and modulates senescence Higher GA levels correlate with increased nodule size and bacterial progeny, providing selective advantage to GA-producing strains 6. Nitrogen Fixation Biochemistry Nitrogenase Enzyme Complex Components: Component I (MoFe protein): Contains molybdenum and iron clusters Component II (Fe protein): Contains iron-sulfur cluster; transfers electrons to Component I Electron donors: Bacteroid respiration provides reducing power; organic acids (malate, α-ketoglutarate) drive electron transport Catalytic Reaction:[ \text{N}_2 + 8 e^- + 16 \text{ATP} \to 2 \text{NH}_3 + \text{H}_2 + 16 \text{ADP} + 16 P_i ] Key Features: Requires strictly anaerobic conditions (oxygen sensitivity) Demands substantial ATP input (~16 molecules ATP per N₂ molecule fixed) B. elkanii bacteroids express oxygen-scavenging mechanisms including leghemoglobin synthesis Oxygen Management in Nodules Oxygen Gradient: Outer nodule layers maintain aerobic respiration for ATP generation Interior nodule zones remain anaerobic for nitrogenase activity B. elkanii respiration consumes oxygen in bacterial layers, maintaining hypoxia in nitrogenase-active compartments Oxygen-Protective Mechanisms: Leghemoglobin (plant-encoded, bacteroid-synthesized iron-containing protein) buffers oxygen at nanomolar levels, preventing nitrogenase inactivation Bacteroid differentiation produces enlarged, polyploid cells with reduced permeability to oxygen Expressed late nodulation proteins (Nols) contribute to oxygen protection Metabolic Integration Carbon-Nitrogen Balance: Host plants provide carbohydrates (photosynthetically-derived organic acids) to bacteroids B. elkanii oxidizes organic acids via citric acid cycle and electron transport chains, generating ATP and reducing equivalents for nitrogenase Efficient strains (e.g., B. elkanii USDA76) show higher enzyme levels for Nod factor synthesis and metabolic integration Ammonia Utilization: Ammonia fixed by nitrogenase is rapidly assimilated via glutamine synthetase (GS) in bacteroids However, much ammonia is excreted to host cells, where plants incorporate it into amino acids (glutamine, aspartate) Plant cells return nitrogen to bacteroids as amino acids and organic compounds, establishing exchange equilibrium 7. Regulatory Networks and Gene Expression NifA-RpoN Regulatory Circuit NifA: Sigma-54-dependent transcriptional activator controlling expression of nitrogen fixation (nif) and related genes Activates nifHDK genes encoding nitrogenase structural proteins Responsive to oxygen levels; activated under microoxic conditions characteristic of nodule interiors Coordinates temporal expression of nif genes with nodule development progression RpoN: Sigma-54 RNA polymerase recognizing NifA-bound promoters Directs transcription from nif promoters bearing NifA-binding sites Links nitrogen fixation gene expression to nodule maturation stage GlnR Regulatory Protein Function: Controls nitrogen assimilation genes and cross-talks with symbiotic signaling Represses genes for nitrogen scavenging (e.g., ABC transporters) when ammonia is abundant Releases repression when ammonia becomes limiting, activating alternative nitrogen acquisition pathways Prevents metabolic conflict during high nitrogen fixation rates AdeR (Adenine Deaminase Regulator) Role: Modulates purine metabolism and symbiotic efficiency Controls genes involved in nucleotide synthesis Adjusted expression enables rapid bacterial replication in nodules while supporting biosynthesis of symbiotic proteins 8. Comparative Genomics: Symbiotic Island Architecture Symbiotic Island Composition B. elkanii genomes contain low GC-content regions (symbiotic islands) harboring symbiosis-essential genes: Island A (Main symbiotic island): ~690 kb Contains nod cluster: nodABC, nodD, nodZ, regulatory sequences Contains nif cluster: nifHDK, nifENX, fixABCX Contains fix genes (flavoproteins, cytochromes) for electron transport Island B (Small region): ~4–44 kb Variable across strains; minimal genes Island C: ~200–518 kb Contains additional metabolic and regulatory genes Variable gene content among B. elkanii strains Lateral Gene Transfer and Evolutionary Plasticity Pangenome Analysis: Bradyrhizobium pangenome: 84,078 gene families across species Core genome: 824 genes (essential cell processes) Accessory genome: 42,409 genes (including symbiotic, metabolic, stress response functions) B. elkanii genomes are moderately stable compared to highly plastic genomes of some Sinorhizobium species Genetic Variations: SNPs and indels in symbiotic islands correlate with symbiotic phenotype differences Polymorphisms in nif, fix, and nodulation regulatory genes drive intraspecific variation Integrative conjugative elements (ICEs) facilitate horizontal transfer of symbiotic genes between Bradyrhizobium strains 9. Stress Response and Environmental Adaptation Osmotic Stress Tolerance Mechanisms: Production of exopolysaccharides (EPS) and trehalose Upregulation of osmolyte synthesis under salt stress Maintenance of cell membrane integrity under water deficit Acid-Soil Adaptation pH Tolerance: Many B. elkanii strains tolerate pH 4.5–6.5, though optimal nodulation occurs at pH 6.0–7.5 Expression of acid-tolerance proteins enables survival in acidic soils Selection pressure in Brazilian Cerrado soils (naturally acidic) has generated acid-adapted B. elkanii strains Mode of Action Step-by-Step Nodulation Process Phase 1: Recognition and Signaling (Hours 0–12) Host root exudation of flavonoids B. elkanii perception and chemotaxis toward root Activation of nod gene transcription via NodD-flavonoid interaction Synthesis and secretion of Nod factors Nod factor recognition by plant NFR1/NFR5 receptors Initiation of early nodulation gene expression in plant Phase 2: Infection (Days 1–3) Root hair curling and bacterial microcolony formation Infection thread invasion through root epidermis T3SS-mediated suppression of plant defense responses Intercellular infection thread progression toward cortex Bacterial translocation into cortical cells Phase 3: Nodule Organogenesis (Days 3–7) Induction of cortical cell mitosis (meristem activation) Differentiation of nodule tissues (vascular bundle, infection zone) Bacterial release from infection threads Formation of peribacteroid membranes Nodule structure maturation Phase 4: Bacteroid Differentiation and Nitrogen Fixation (Days 7–21) B. elkanii endoreduplication and morphological differentiation Expression of nitrogenase (nif) and iron-sulfur cluster synthesis genes Establishment of microaerobic environment Initiation of nitrogen fixation Nitrogen transfer to host plant Phase 5: Sustained Symbiosis (Weeks 3–Harvest) Peak nitrogen fixation rates Continuous nitrogen supply to plant Bacterial maintenance and reproduction within nodules Age-dependent nodule senescence in late pod-fill stages Additional Info Recommended Crops: Cereals, Millets, Pulses, Oilseeds, Fibre Crops, Sugar Crops, Forage Crops, Plantation crops, Vegetables, Fruits, Spices, Flowers, Medicinal crops, Aromatic Crops, Orchards, and Ornamentals. Compatibility: Compatible with Bio Pesticides, Bio Fertilizers, and Plant growth hormones but not with chemical fertilizers and chemical pesticides. Shelf Life: Stable within 1 year from the date of manufacturing. Packing: We offer tailor-made packaging as per customers' requirements. Dosage & Application Crop Recommendations and Compatibility Compatible Legumes for B. elkanii Primary Hosts: Soybean (Glycine max) – highest efficiency and most extensively studied Peanut (Arachis hypogaea) – excellent nodulation; SEMIA 6144 strain widely used Mung Bean (Vigna radiata) – strain-dependent compatibility (USDA61 is incompatible with some cultivars) Black-Eyed Pea (Vigna unguiculata) – variable efficiency depending on strain Secondary Hosts (with strain-specific compatibility): Groundnut (Arachis hypogaea) Yard-long Bean (Vigna unguiculata subsp. sesquipedalis) Black Gram (Vigna mungo) – USDA61 strain shows exceptional specificity Broad Host Range (Associated Legumes): Various Vigna species Certain Vicia species Select native legume species Non-Host Associations (Growth Promotion Without Nodulation) B. elkanii can colonize grass roots and promote growth through: Production of plant growth hormones (IAA, gibberellins) Enhanced root development and mineral uptake Demonstrated effects on: white oats, black oats, ryegrass Associated References: Similar to Paenibacillus azotofixans, which also promotes non-legume growth through PGPR mechanisms, B. elkanii exhibits plant growth-promoting properties beyond nodulation. Compatibility with Agricultural Inputs Input Type Compatibility Notes Bio-Pesticides Compatible Use with caution; avoid simultaneous application with broad-spectrum fungicides Bio-Fertilizers Compatible Synergistic effects with phosphate-solubilizing bacteria (PSB) observed Plant Growth Hormones Compatible Enhanced effects when combined with IAA or gibberellin-producing organisms Chemical Fertilizers Incompatible Avoid high rates of urea; inhibit nodule formation and nitrogen fixation Fungicides (Broad-Spectrum) Incompatible Fungicides reduce bacterial viability; use selective agents or pre-inoculation strategies Herbicides Compatible (Selective) Most herbicides compatible; avoid herbicides with antimicrobial activity Insecticides Compatible (Most) Compatibility varies by class; pyrethroids and neonicotinoids generally safe Shelf Life and Storage Shelf Life: Stable for up to 1 year from manufacturing date under proper conditions Storage Temperature: Cool, dry conditions; maintain 4–15°C for extended viability Light Protection: Store away from direct sunlight (UV light reduces viability) Humidity: Keep in sealed containers to prevent moisture loss Monitoring: Check for discoloration, odor, or contamination before use; discard if compromised Dosage and Application Methods Seed Coating/Seed Treatment Protocol: Prepare slurry: Mix 10 g of Bradyrhizobium elkanii with 10 g crude sugar in sufficient water Coat 1 kg of seeds evenly with slurry mixture Dry coated seeds in shade before sowing (allow 2–3 hours) Sow treated seeds immediately or store in cool, dry conditions for up to 60–90 days (viability maintained with proper storage) Advantages: Simple, cost-effective, ensures bacterium-seed contact, minimal equipment Seedling Treatment (Nursery Application) Protocol: Mix 100 g of Bradyrhizobium elkanii with sufficient water Dip seedling roots into inoculant slurry for 5–10 minutes Transplant seedlings into field immediately Applications: Nursery-raised legumes (peanut, some vegetables); labor-intensive but ensures high infection rates Soil Application (Broadcasting) Protocol: Mix 3–5 kg per acre of Bradyrhizobium elkanii with organic manure or vermicompost Distribute mixture uniformly across field during land preparation Incorporate into soil by plowing or harrowing 2–3 weeks before sowing Alternatively, apply close to seeding for rapid root colonization Advantages: Builds soil population; benefits residual inoculum for crop rotations Rate: 3–5 kg/acre optimal for establishment of ~10⁷–10⁸ CFU/g soil Irrigation/Fertigation Application Protocol: Mix 3 kg per acre of Bradyrhizobium elkanii in water (1:10 ratio) Pass through 100-mesh filter to remove particles Apply via drip lines or sprinkler irrigation system Best applied in evening to reduce UV exposure Advantages: Reaches established root systems; applicable post-emergence; supports nodule maintenance Timing: Early vegetative stages (V2–V4) for maximum nodule formation FAQ General Biology and Function What makes Bradyrhizobium elkanii different from free-living nitrogen fixers like Paenibacillus azotofixans? Bradyrhizobium elkanii is a symbiotic nitrogen fixer that forms intimate associations with legume roots and establishes specialized nitrogen-fixing nodules. In contrast, Paenibacillus azotofixans is a free-living nitrogen fixer that operates independently in soil without forming nodules. B. elkanii achieves higher nitrogen fixation rates (100–300 kg N/ha/season) through symbiotic cooperation with host plants, whereas P. azotofixans supplies more modest benefits (20–50 kg N/ha depending on conditions). B. elkanii cannot infect non-legume hosts, while P. azotofixans benefits a broad range of crop species through general PGPR mechanisms. For legume cultivation, B. elkanii is the preferred choice due to superior nitrogen fixation efficiency. How does Bradyrhizobium elkanii survive in different soil conditions? B. elkanii survives through multiple strategies. As a non-spore-forming bacterium, it depends on competitive fitness and metabolic flexibility rather than dormancy. B. elkanii tolerates: Acidic soils (pH 4.5–6.5): Acid-adapted strains (e.g., from Brazilian Cerrado) have evolved acid-tolerance proteins Drought: Produces exopolysaccharides (EPS) and osmolytes for osmotic balance Salinity: Synthesizes antioxidant molecules and ionic homeostasis proteins Temperature fluctuations: Expresses heat-shock proteins and cold-adaptation proteins Nutrient starvation: Metabolic versatility supports survival on minimal carbon and nitrogen sources Survival in soils is enhanced by host plant association, which supplies carbohydrates and maintains favorable microenvironments within root nodules. Can Bradyrhizobium species work synergistically with other soil bacteria? Yes, synergistic effects are well-documented: Phosphate-solubilizing bacteria (PSB): Co-inoculation with PSB (e.g., Bacillus megaterium) enhances phosphorus availability, improving B. elkanii nodule formation and nitrogen fixation Azospirillum species: Co-inoculation of B. elkanii with Azospirillum brasilense produces superior soybean growth through complementary IAA production; IAA stimulates root growth, improving rhizobial infection Bacillus subtilis: Co-inoculation in saline-alkali soils increased soybean yield by 18% compared to B. elkanii alone Biofilm formation: In consortia, rhizobia establish biofilms on root surfaces, enhancing competition with native rhizobia and pathogenic microbes What is the optimal soybean genotype for B. elkanii nodulation? Optimal genotypes depend on strain compatibility with soybean Rj genes: Best compatibility: Non-Rj genotypes and Rj4-gene carriers (with compatible B. elkanii strains, but not USDA61) Poor compatibility: Rj3-genotype cultivars generally incompatible with B. elkanii Type B strains Strain-specific: B. elkanii strains vary in effectiveness with different cultivars USDA76, SEMIA 587, SEMIA 5019: Good nodulation on most soybean genotypes USDA61: Excellent on soybean but incompatible with Rj4 genotypes Elite strains (e.g., ESA 123): Superior performance in drylands Recommendation: For maximum nitrogen fixation, select cultivars without restrictive Rj genes and pair with adapted strain Agricultural Applications and Management Which crops benefit most from Bradyrhizobium elkanii application? All legume crops benefit, but effectiveness varies: Highest benefit: Soybean, peanut, mung bean (90–300 kg N/ha fixation) Good benefit: Black-eyed pea, groundnut, yard-long bean (100–200 kg N/ha) Situational benefit: Native legumes, forage legumes (highly variable) No benefit: Non-legume crops (though limited growth promotion observed with some grasses) Factors maximizing benefit: Presence of native rhizobial population <10⁴ CFU/g soil Absence of antagonistic soil microbes Compatible soybean genotype (for soybean) Adequate soil pH (5.5–7.5) Highest ROI crops: Soybean in virgin soils; peanut in semi-arid regions with drought-adapted strains How quickly can farmers expect to see results from Bradyrhizobium elkanii inoculation? Timeline: 1–2 weeks post-inoculation: Infection thread formation; root colonization progresses 2–4 weeks: Visible nodule appearance; initiation of nitrogen fixation 4–8 weeks: Peak nodulation and nitrogen fixation rates established 8–16 weeks (R1–R5 stages in soybean): Cumulative nitrogen benefit becomes apparent in plant biomass Harvest: Final yield difference becomes quantifiable Field observations: Early-inoculated plants show accelerated growth compared to uninoculated controls Root development superior within 3–4 weeks Leaf color and vigor improvements evident by 6–8 weeks Yield increase: 5–60% depending on initial soil population and environmental conditions Maximum benefit: Observed at crop maturity; early-season nodulation establishes sustained nitrogen supply for pod fill and grain development Is Bradyrhizobium elkanii compatible with other agricultural inputs? Compatibility Summary: ✓ Bio-pesticides: Compatible (exclude broad-spectrum fungicides) ✓ Bio-fertilizers & PSB: Highly compatible; synergistic effects ✓ Plant hormones (IAA, GA): Compatible; enhanced effects ✓ Herbicides: Most compatible; avoid antimicrobial formulations ✗ Chemical fertilizers: High nitrogen rates inhibit nodulation ✗ Broad-spectrum fungicides: Lethal to B. elkanii; use selective or post-inoculation application ✗ Chemical nematicides: Many reduce viability Recommendation: Apply B. elkanii as early as possible (seed or pre-plant soil); avoid fungicides during first 4–6 weeks post-inoculation. Nitrogen fertilizers should be minimal (<50 kg N/ha) to avoid suppression of nitrogen fixation. Environmental Impact and Sustainability Does Bradyrhizobium elkanii have any environmental risks? Safety Profile: Naturally occurring soil bacterium; non-pathogenic to plants and animals No environmental accumulation; subject to normal soil microbial turnover Approved for organic farming systems (non-GMO) Reduces synthetic fertilizer use, thereby lowering greenhouse gas emissions Environmental Benefits: Replaces ~100–300 kg N/ha of synthetic fertilizer per crop season Synthetic fertilizer production accounts for ~2% of global energy use; B. elkanii reduces this footprint Decreases soil contamination risk from excess nitrate leaching Improves soil carbon sequestration through enhanced root exudation and organic matter Potential concerns (minimal): If non-competitive strains displace native rhizobia (rare; native populations typically recover) Nodule senescence releases carbon; however, net soil carbon often increases due to residual legume biomass Overall: B. elkanii inoculation is environmentally sound and beneficial to soil ecosystems How does Bradyrhizobium elkanii contribute to sustainable farming? Sustainability Contributions: Nitrogen cycle restoration: Reduces dependence on Haber-Bosch synthetic nitrogen Soil health: Improves biological activity, organic matter, and aggregate stability Crop rotation benefits: Legume crops (with B. elkanii) replenish nitrogen for subsequent cereal crops; reduces fertilizer for following season by 30–50% Carbon footprint reduction: Avoids emissions from fertilizer production (~0.5 kg CO₂ per kg N eliminated) Resilience to climate variability: Nitrogen fixation continues under drought (strain-dependent) better than relying on soil nitrogen pools Economic sustainability: Inoculant cost (~$2–5 per hectare) << synthetic nitrogen fertilizer cost (~$15–40 per hectare) Broader implications: Integration of B. elkanii inoculation into farming systems supports UN Sustainable Development Goal 12 (Responsible Consumption and Production) and Goal 13 (Climate Action) Can Bradyrhizobium elkanii help with climate change mitigation? Direct contributions: Reduced N₂O emissions: Elite strains carrying N₂O reductase (nos genes) reduce soil N₂O emissions by ~70% compared to standard strains Fertilizer reduction: Each kilogram of synthetic nitrogen avoided saves ~5 kg CO₂ equivalent from production and transport Soil carbon sequestration: Enhanced root exudation and legume residue decomposition increases soil carbon stocks Example calculation: Soybean field (50 ha) with B. elkanii inoculation Replaces 100 kg N/ha with biological fixation Avoids: 5,000 kg CO₂ equivalent (from fertilizer production), 100 kg N₂O equivalent (20 kg CO₂ equivalent), 250 kg CO₂ (from transport/application) Total mitigation: ~5,370 kg CO₂ equivalent per season Product Selection and Application Strategies How should Bradyrhizobium elkanii products be stored? Storage Conditions: Temperature: 4–15°C (cool, dry storage) Light: Darkness (UV light reduces viability by ~50% per week) Humidity: Sealed containers; humidity <70% Duration: Up to 1 year from manufacturing date Storage best practices: Keep in original sealed containers Store in dedicated cool storage (not with agrochemicals or fertilizers) Avoid direct sunlight, heat exposure Do not refrigerate below 4°C (cold stress reduces viability) Check for discoloration, foul odor, or contamination before use Discard products exceeding shelf life or showing signs of degradation Pre-application checks: Verify CFU concentration (should be ≥10⁸ CFU/g) Confirm expiration date Check for clumping or separation (sign of degradation) What is the optimal application timing for Bradyrhizobium elkanii? Timing Strategy: Best: Seed treatment 3–14 days before sowing (allows infection thread formation before water stress from germination) Good: At-planting seed treatment (simultaneous with sowing) Acceptable: Soil application 2–3 weeks before sowing (establishes soil population) Last resort: Early V2–V4 application (later than ideal but still effective) Seasonal considerations: Spring planting: Warmer soils favor infection; apply when soil temperature ≥15°C Monsoon crops: Ensure good soil drainage; waterlogged soils reduce nodulation Dry seasons: Apply post-irrigation or pre-monsoon for optimal soil moisture Sequential plantings: If crop residue is retained (no-till), residual soil population often supports second-year crops; re-inoculation beneficial only if populations fall below 10⁴ CFU/g soil Can organic farmers use Bradyrhizobium elkanii? Organic Certification Status: Yes, fully approved for certified organic production Bradyrhizobium elkanii is a naturally occurring, non-GMO soil bacterium Meets IFOAM (International Federation of Organic Agriculture Movements) standards Complies with organic certification requirements (USDA National Organic Program, EU Organic Regulation, others) Organic system benefits: Eliminates synthetic nitrogen fertilizer requirement Supports crop rotation strategies Improves soil biological diversity Aligns with organic philosophy of biological nutrient cycling Recommendations for organic farmers: Use seed treatments rather than synthetic fungicide combinations Apply biological inoculants early (seed or pre-plant) Avoid synthetic fungicides during critical nodulation period (first 4–6 weeks) Incorporate into comprehensive organic management (crop rotation, adequate organic matter, proper pH) Connecting B. elkanii and P. azotofixans While Bradyrhizobium elkanii and Paenibacillus azotofixans represent distinct nitrogen-fixing strategies, both contribute to agricultural sustainability: Characteristic B. elkanii P. azotofixans Nitrogen fixation strategy Symbiotic (nodulation) Free-living soil Host range Legumes (highly specific) Broad host range (all crops) Nitrogen contribution 100–300 kg N/ha/season 20–50 kg N/ha/season Nodule formation Yes; essential No PGPR functions Limited (nodulation-focused) Multiple (IAA, GA, biocontrol) Best use Legume crops Non-legumes and supplementary legume inoculation Interaction Can compete for nodule occupancy Complementary; enhances B. elkanii effectiveness via IAA production Integrated Approach: In diversified farming systems, B. elkanii inoculant for legume crops followed by P. azotofixans for non-legume crops creates a comprehensive biological nitrogen management strategy. Conclusion Bradyrhizobium elkanii represents a cornerstone microorganism for sustainable legume production. Its sophisticated molecular mechanisms for host recognition, infection, and nitrogen fixation, combined with practical agricultural benefits, make it indispensable for modern sustainable agriculture. With proper strain selection, timing, and integration with complementary practices, B. elkanii inoculation can significantly improve crop yields, reduce fertilizer dependency, and enhance soil health across diverse agroecosystems. Related Products Acetobacter xylinum Azospirillum brasilense Azospirillum lipoferum Azospirillum spp. Azotobacter vinelandii Beijerinckia indica Bradyrhizobium japonicum Gluconacetobacter diazotrophicus More Products Resources Read all

  • Beauveria Bassiana biocontrol Manufacturer & Exporter | Biocontrol | Microbial Species | Indogulf BioA

    Beauveria bassiana is a beneficial entomopathogenic fungus used as a biological insecticide to effectively control termites, thrips, whiteflies, aphids, beetles, and other pests. Its spores attach to the insect’s exoskeleton, penetrate the body, and proliferate, ultimately leading to pest mortality while preventing resistance development. This eco-friendly alternative to chemical pesticides provides long-lasting, broad-spectrum pest control and integrates seamlessly into integrated pest management (IPM) programs. Safe for beneficial insects and pollinators, Beauveria bassiana is applied via foliar sprays, soil drenches, and termite baiting, offering sustainable protection in agriculture, greenhouses, and urban pest management < Microbial Species Beauveria bassiana Beauveria bassiana is a beneficial entomopathogenic fungus used as a biological insecticide to effectively control termites, thrips, whiteflies, aphids, beetles, and other pests. Its spores… Show More Strength 1 x 10⁸ CFU per gram / 1 x 10⁹ CFU per gram Product Enquiry Download Brochure Benefits Environmentally friendly Beauveria bassiana is safe for the environment, biodegradable, and leaves no harmful residues. Effective mode of action Infects insects through their cuticles, colonizing and killing them from within. Long-term efficacy Provides sustainable pest control without inducing pest resistance over time. High specificity Targets a wide range of pests like termites, thrips, and aphids while sparing beneficial insects. Dosage & Application Additional Info Scientific References Mode of Action FAQ Scientific References Beauveria bassiana has been extensively studied with over 500 published research papers demonstrating its efficacy against diverse insect pests, with notable studies in Journal of Invertebrate Pathology, Biocontrol Science and Technology, and Applied Entomology documenting mortality rates of 80-100% against target species. EPA safety evaluations confirm minimal toxicity to mammals with complete clearance from test animals within 7 days, supporting its registration as a safe biological pesticide. Recent genomic and proteomic research has identified key virulence genes and toxin production mechanisms, advancing strain optimization and formulation improvements for enhanced field efficacy. informaticsjournals+4 Mode of Action Spore Attachment and Penetration : Fungal conidia attach to insect cuticle and produce specialized enzymes (chitinases, proteases, lipases) that degrade the exoskeleton, with appressoria structures providing mechanical pressure for cuticle penetration. www.indogulfbioag.com Biological Pest Control Using Beauveria bassiana: A Natural Solution for Crop Protection in Agriculture Beauveria bassiana is a natural biocontrol agent reducing chemical pesticide use, offering sustainable pest management in agriculture. Internal Colonization : Once inside the hemolymph, fungus produces specialized blastospores that exploit nutrient-rich environment while releasing secondary metabolites including beauvericin, bassianolide, tenellin, and oosporein that disrupt insect physiological processes. www.indogulfbioag.com Biological Pest Control Using Beauveria bassiana: A Natural Solution for Crop Protection in Agriculture Beauveria bassiana is a natural biocontrol agent reducing chemical pesticide use, offering sustainable pest management in agriculture. Host Death and Sporulation : Insect mortality occurs through nutrient depletion and toxin accumulation within 3-14 days, followed by hyphal emergence from cadaver and sporulation for environmental spore dispersal, enabling horizontal transfer to other pest individuals. pmc.ncbi.nlm.nih.gov The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects The long-term and excessive usage of pesticides is an enormous burden on the environment, which also increases pest resistance. To overcome this problem, research and application of entomopathogenic fungi, which are both environmentally friendly and ... Additional Info IndoGulf BioAg: Leading Manufacturer and Exporter of Beauveria bassiana IndoGulf BioAg is a premier manufacturer and exporter of Beauveria bassiana , an entomopathogenic fungus widely recognized for its effectiveness as a biological insecticide. Our specially formulated Beauveria bassiana products provide an eco-friendly and sustainable alternative to chemical pesticides, ensuring effective pest control across various agricultural systems. Target Pests Our Beauveria bassiana formulations effectively combat a wide range of insect pests, including: Termites Thrips Whiteflies Aphids Rice Leaf Folder Helicoverpa armigera Spodoptera litura Loopers Bunch Caterpillars Leaf-Eating Caterpillars Mealy Bugs Coffee Berry Borers Fruit Borers (Brinjal, Tomato, Chili, and Vegetables) Cotton Bollworm Root Grubs Surface-Living Larvae and Nymphs These pests can cause severe damage to a variety of crops, and our Beauveria bassiana solutions offer an effective method of controlling their populations while promoting environmental sustainability. Recommended Crops Our Beauveria bassiana products are suitable for use on a diverse range of crops, including: Cereals and Millets Pulses Oilseeds Fiber Crops Sugar Crops Forage Crops Plantation Crops Vegetables Fruits Spices Flowers Medicinal and Aromatic Crops Orchards Ornamentals This broad-spectrum applicability supports integrated pest management strategies across various farming practices. Compatibility Our Beauveria bassiana formulations are compatible with several agricultural inputs, including: Bio-Pesticides Bio-Fertilizers Plant Growth Hormones However, they are not compatible with chemical fertilizers and chemical pesticides , as these can adversely impact the viability and effectiveness of the fungal spores. Enhanced Stability Solutions We offer advanced stabilization techniques to improve product shelf life and performance: Multilayered Encapsulation Techniques – Enhances stability but may result in increased pricing. Incorporation of Antioxidants & Oxygen Removers – Further extends shelf life and potency. Extended Shelf Life – Under optimal conditions (5°C to 25°C), all our Beauveria bassiana species remain stable for up to 18 months post-manufacturing. Packaging Options We provide customizable packaging solutions to cater to specific customer needs, ensuring convenience and suitability for various application requirements. Why Choose IndoGulf BioAg? Eco-Friendly Alternative – Reduces reliance on chemical pesticides. Sustainable Agriculture – Promotes biodiversity and minimizes chemical residues. Broad Pest Control Spectrum – Targets a wide variety of insect pests. Versatile Applications – Suitable for multiple crops and farming systems. Dosage & Application Wettable Powder: 1 x 10⁸ CFU per gram Foliar Application : 1 Acre dose: 2 kg 1 Ha dose: 5 kg Soil Application (Soil drench or Drip irrigation) : 1 Acre dose: 2-5 kg 1 Ha dose: 5-12.5 kg Soil Application (Soil drench or Drip irrigation) for Long Duration Crops / Orchards / Perennials : 1 Acre dose: 2-5 kg 1 Ha dose: 5-12.5 kg Apply 2 times a year: before onset of monsoon and after monsoon Foliar Application for Long Duration Crops / Orchards / Perennials : 1 Acre dose: 2 kg 1 Ha dose: 5 kg Apply 2 times a year: before onset of monsoon and after monsoon Soluble Powder: 1 x 10⁹ CFU per gram Foliar Application : 1 Acre dose: 200 g 1 Ha dose: 500 g Soil Application (Soil drench or Drip irrigation) : 1 Acre dose: 200-500 g 1 Ha dose: 500 g - 1.25 kg Soil Application (Soil drench or Drip irrigation) for Long Duration Crops / Orchards / Perennials : 1 Acre dose: 200-500 g 1 Ha dose: 500 g - 1.25 kg Apply 2 times a year: before onset of monsoon and after monsoon Foliar Application for Long Duration Crops / Orchards / Perennials : 1 Acre dose: 200 g 1 Ha dose: 500 g Apply 2 times a year: before onset of monsoon and after monsoon Application Methods Soil Application Method : Mix Beauveria Bassiana at recommended doses with compost and apply at early life stages of crop along with other biofertilizers. Mix Beauveria Bassiana at recommended doses in sufficient water and drench soil at early insect emergence stage. Drip Irrigation : If there are insoluble particles, filter the solution and add to drip tank. Long Duration Crops / Perennial / Orchard Crops : Dissolve Beauveria Bassiana at recommended doses in sufficient water and apply as a drenching spray near the root zone during the off-season, twice a year. It is recommended to have the first application before the onset of the main monsoon/rainfall/spring season and the second application after the main monsoon/rainfall/autumn/fall season. Foliar Application Method : Mix Beauveria Bassiana at recommended doses in sufficient water and spray on soil during the off-season. Apply twice a year for long-duration crops. It is recommended to have the first application before the onset of the main monsoon/rainfall/spring season and the second application after the main monsoon/rainfall/autumn/fall season. Note : Do not store Beauveria Bassiana solution for more than 24 hours after mixing in water. FAQ What is Beauveria bassiana used for? Beauveria bassiana is used as a biological insecticide for controlling over 200 insect pest species including aphids, whiteflies, thrips, caterpillars, beetles, termites, and soil grubs across cereals, vegetables, fruits, and ornamental crops, providing eco-friendly pest management in integrated pest management systems. What disease is caused by Beauveria bassiana? Beauveria bassiana does not cause disease in plants. Instead, it causes mycosis (fungal infection) in target insect pests. The fungus penetrates the insect cuticle and proliferates within the hemolymph, producing secondary metabolites (beauvericin, bassianolide, tenellin, and oosporein) that disrupt insect physiological processes, leading to insect death within 3-14 days. This pathogenic effect is species-specific to insects and poses no threat to plant health. What does Beauveria bassiana kill? Beauveria bassiana effectively targets a broad spectrum of insect pests, including: Aphids, Rice Leaf Folder, Helicoverpa armigera, Spodoptera litura, Loopers, Bunch Caterpillars, Leaf-Eating Caterpillars, Mealy Bugs, Coffee Berry Borers, Fruit Borers (Brinjal, Tomato, Chili, and Vegetables), Cotton Bollworm, Root Grubs, Surface-Living Larvae and Nymphs, Termites, Thrips, Whiteflies, and Beetles. Research demonstrates mortality rates of 80-100% against target species under field conditions. When to apply Beauveria bassiana? Timing depends on crop type: Annual Crops : Apply at early insect emergence stage or during peak pest activity Long Duration Crops / Perennials / Orchards : Apply twice yearly - before the onset of monsoon/rainfall/spring season and after the main monsoon/rainfall/autumn/fall season Preventive Applications : Mix with compost and apply at early life stages of the crop Optimal Conditions : Apply in cool, humid conditions (early morning or late evening) for best spore viability and adhesion to target pests How to use Beauveria bassiana for plants? Beauveria bassiana can be applied using multiple methods: Foliar Application (Spray on leaves): Wettable Powder (1×10⁸ CFU/g): Mix 2 kg per acre (5 kg/ha) in sufficient water Soluble Powder (1×10⁹ CFU/g): Mix 200 g per acre (500 g/ha) in sufficient water Spray thoroughly to ensure coverage of affected foliage Do not store solution for more than 24 hours after mixing Soil Application (Drench): Wettable Powder: 2-5 kg per acre (5-12.5 kg/ha) Soluble Powder: 200-500 g per acre (500 g-1.25 kg/ha) Mix with sufficient water and drench soil at early insect emergence stage For long-duration crops, apply near the root zone during off-season Drip Irrigation: Filter the solution if there are insoluble particles Add to drip tank at recommended doses Ensures uniform distribution and soil colonization Compatibility Tip: Beauveria bassiana is compatible with bio-pesticides, bio-fertilizers, and plant growth hormones but NOT compatible with chemical fertilizers and chemical pesticides. Can Beauveria bassiana infect humans? Beauveria bassiana poses minimal risk to humans with EPA toxicity studies showing no pathogenicity in mammals, though rare opportunistic infections in severely immunocompromised patients have been reported; manufacturing personnel surveillance since 2008 shows no infectivity or sensitization effects, making it safe for agricultural workers when proper protective equipment is used. Is Beauveria bassiana safe for bees? Research indicates Beauveria bassiana has minimal impact on honey bees with mortality rates considered negligible in field studies, though some sublethal effects including altered cuticular profiles and moderate brood mortality have been observed at high exposure levels; it can be applied to non-bee attractive plants without significant colony risks. Is Beauveria bassiana effective against bed bugs? Beauveria bassiana demonstrates high efficacy against bed bugs with commercial formulations like Aprehend achieving 80-100% mortality within 7-14 days, effectively penetrating pyrethroid-resistant populations through contact exposure, with horizontal transfer capabilities spreading infection throughout bed bug aggregations for enhanced population control. Related Products Hirsutella thompsonii Isaria fumosorosea Lecanicillium lecanii Metarhizium anisopliae Nomuraea rileyi More Products Resources Read all

  • Contact Us – Indogulf BioAg

    Contact Indogulf BioAg, a leading manufacturer and exporter of biofertilizers and eco-friendly farming products in the USA. Let's talk Have questions or need assistance? Reach out to us today! Contact +1 437 774 3831 biosolutions@indogulfgroup.com eu.sales@indogulfbioag.com Get in touch, and we'll respond promptly to assist you. First name(Required) Email(Required) (Required) Country (Required) Long answer(Required) Send United Kingdom Indogulf BioAg Battle House 1 East Barnet Road, New Barnet Herts EN4 8RR Germany Indogulf BioAg UG Podbielskistraße 333, 30659 Hannover Canada Indogulf BioAg LLC 700 Collip Circle, Suite 122 Stiller Centre, Western Research Park London, Ontario N6G 4X8 United States Indogulf BioAg LLC 1309 Coffeen Avenue STE 1200, Sheridan, Wyoming 82801 India Indo Gulf Company 101, Blue Bell Building, Sitaram, Compound, Crawford Market, Mumbai, Maharashtra 400001 Join the movement toward smarter, sustainable agriculture Be our distributor Partner with IndoGulf BioAg and bring cutting-edge microbial and nano-technologies to growers in your region. As a dealer, you’ll gain access to premium biological inputs, comprehensive product training, marketing support, and a growing global community focused on transforming agriculture from the ground up. Let’s grow better—together. Use the contact form above or click the button below to get started. Contact us

  • Organic Fertilizers Manufacturer in USA, CA, EU | Indogulf BioAg

    Indogulf BioAg is a leading and trusted organic agricultural fertilizer & nano tech based nutrients manufacturer and exporter in USA, Canada & Europe. Contact us @ +1 437 774 3831 NATURE IS THE BEST TECHNOLOGY Naturally derived nutrients that deliver a big harvest Our Products featured What We Offer Microbial Species Biofertilizers Environmental Solutions Nano Fertilizers CDMO Microbial Species Unlock the potential of your soil with our carefully selected microbial strains, engineered to enhance nutrient availability, promote plant growth, and suppress harmful pathogens, ensuring healthier crops and improved yields. Learn more Nano Fertilizers Experience the next generation of fertilization with our nano fertilizers, delivering nutrients at the molecular level for maximum efficiency and minimal environmental impact, resulting in enhanced fertility and optimized plant nutrition. Learn more Environmental Solutions Our comprehensive environmental solutions offer innovative approaches to sustainability, from waste management to renewable energy initiatives, helping businesses and communities reduce their ecological footprint and foster a greener future. Learn more Biofertilizers Supercharge your crops with our biofertilizers – powered by beneficial microbes that fix nitrogen, solubilize phosphorus, and boost root development for stronger, more resilient plants and sustainable productivity. Learn more CDMO Services Accelerate your product journey with our CDMO services – from microbial strain development to large-scale fermentation and formulation, we deliver custom, end-to-end solutions with precision, speed, and regulatory compliance. Learn more Balance Your Soil with Microbial Species More about Microbial Species Biofertilizers Root Enhancers View Collection Soil Enhancers View Collection Microbial Blends View Collection Plant Protect View Collection Crop Kits View Collection Soil Conditioners View Collection More about Biofertilizers Balance Your Ecosystem with Innovative Solutions More about Environmental Solutions Empowering farmers with innovative soil carbon solutions. About us Fertilize Your Soil for Bountiful Harvests More about Nano Fertilizers CDMO Services CRO Services Strain identification, screening, and performance validation through lab studies and field trials—built on rigorous scientific protocols. Learn More Contract Manufacturing Scalable production of microbial products, including fermentation, formulation, and packaging, with full quality control. Learn More Custom Formulation Development of crop- and region-specific microbial blends optimized for efficacy, compatibility, and stability. Learn More Private Label Launch-ready microbial products under your brand, with complete support from formulation to compliant packaging. Learn More Regulatory Support Expert preparation of regulatory dossiers and guidance for product registration in global markets. Learn More More about our CDMO Services Driving sustainable agriculture forward with our microbial innovation. Our Brands Industries We Serve Agriculture Sustainable crop production using biofertilizers and nano-fertilizers to increase yields, enrich soil fertility, and reduce chemical inputs. Learn More Animal Health Probiotic feed additives and waste treatment microbes that improve livestock growth, animal wellness, and farm hygiene in poultry, dairy, aquaculture, and more. Learn More Bioremediation Microbial consortia for environmental cleanup – breaking down oil spills, pesticide residues, and industrial pollutants to restore soil and water quality. Learn More Wastewater Treatment Bio-augmentation of treatment plants with specialized bacteria that accelerate organic waste degradation, reduce sludge, and remove nutrients from effluents. Learn More Mining Bio-mining and remediation solutions, including bacteria that extract metals from ores and microbes that mitigate acid mine drainage and detoxify mining waste. Learn More Nutraceuticals Production of probiotic strains and fermentation-derived nutrients (vitamins, enzymes) for dietary supplements and functional foods that promote human health. Learn More Cosmetics Fermented ingredients and probiotic extracts for skincare and personal care products, providing natural, effective alternatives to synthetic chemicals. Learn More Innovation. Global Reach. Precision. Trust. State-of-the-Art Innovation Our cutting-edge research and development infrastructure – from microbial fermentation to advanced formulation – drives the proven performance of our biotechnology solutions. Global Export Expertise With decades of international export experience, we offer full regulatory and logistics support to help you import our products smoothly, anywhere in the world. Tailored Formulations We develop custom microbial and nutrient blends to meet specific crop and soil needs. Commercial orders can be delivered with white-label packaging upon request. Certified Quality Our biological inputs are registered and certified in multiple countries, including the U.S. and U.K., and meet organic standards with certification from Indocert. Get in touch Resources Read all

  • Work with Indogulf BioAg | Join the Future of Sustainable Agriculture

    Explore exciting career opportunities at Indogulf BioAg. Join our mission to revolutionise agriculture with nano fertilizers, bio-solutions, and innovative crop nutrition technologies. Work with us Join a global community advancing sustainable agriculture and bio-based innovation. Whether you’re a distributor, retailer, researcher, intern, or industry professional, we offer meaningful pathways to grow with us. For Distributors & Retailers Become part of a trusted network delivering high-performance microbial and nano-based solutions to growers worldwide. We provide: Proven products with strong field results Competitive margins and regional exclusivity opportunities Dedicated sales, technical, and marketing support Fast logistics and reliable supply Let’s grow your market together. Contact us Your Future. Our Mission. A Better Planet. Distributors & Retailers Become part of a trusted network delivering high-performance microbial and nano-based solutions to growers worldwide. Researchers & Industry Partners Collaborate with us on field trials, co-development of microbial formulations, product validation, and technology transfer projects. Careers: Join Our Team We’re always looking for passionate people who believe in science-driven solutions. Internships We welcome motivated students and early-career scientists. Ready to make an impact? Tell us who you are and how you’d like to collaborate. Submit your details below and our team will reach out. First name* Email* Phone* Company name Dropdown Country I am interested in (select one or more): Becoming a Distributor Retail Partnership Commercial Collaboration Job Inquiry / Internship Other How did you hear about us? Google Telesales Linkedin Social Media Referral Other Message File upload Upload File I agree to be contacted by IndoGulf BioAg regarding this inquiry. * Add me to your mailing list for updates and opportunities. Submit

bottom of page